Supplementary Material

Proof of Lemma 1

We first introduce the following two lemmas.
Lemma 5. (Lemma 6 in Hazan and Minasyan (2020)) Under Assumption 1, the linear value oracle $\mathcal{M}_{\mathcal{K}}(\cdot)$ is convex and D-Lipschitz, i.e.,

$$
\begin{equation*}
\forall \mathbf{y}_{1}, \mathbf{y}_{2} \in \mathbb{R}^{d},\left|\mathcal{M}_{\mathcal{K}}\left(\mathbf{y}_{1}\right)-\mathcal{M}_{\mathcal{K}}\left(\mathbf{y}_{2}\right)\right| \leq D\left\|\mathbf{y}_{1}-\mathbf{y}_{2}\right\|_{2} . \tag{38}
\end{equation*}
$$

Lemma 6. (Lemma 11 in Hazan and Minasyan (2020)) The function $h_{\eta}^{*}(\mathbf{y})=\mathbb{E}_{\mathbf{v} \sim \mathbb{B}}\left[\mathcal{M}_{\mathcal{K}}\left(\mathbf{y}+\frac{1}{\eta} \cdot \mathbf{v}\right)\right]$ is $\eta d D$-smooth, given $\mathcal{M}_{\mathcal{K}}(\cdot): \mathbb{R}^{d} \rightarrow \mathbb{R}$ is D-Lipschitz, i.e., $\forall \mathbf{y}_{1}, \mathbf{y}_{2} \in \mathbb{R}^{d}$

$$
\begin{equation*}
h_{\eta}^{*}\left(\mathbf{y}_{1}\right) \leq h_{\eta}^{*}\left(\mathbf{y}_{2}\right)+\left\langle\nabla h_{\eta}^{*}\left(\mathbf{y}_{2}\right), \mathbf{y}_{1}-\mathbf{y}_{2}\right\rangle+\frac{\eta d D}{2}\left\|\mathbf{y}_{1}-\mathbf{y}_{2}\right\|_{2}^{2} . \tag{39}
\end{equation*}
$$

Lemma 6 implies that $h_{\eta}^{*}(\cdot)$ is $\eta d D$-smooth. Therefore, we have

$$
\begin{equation*}
\forall \mathbf{y}_{1}, \mathbf{y}_{2} \in \mathbb{R}^{d},\left\|\nabla h_{\eta}^{*}\left(\mathbf{y}_{1}\right)-\nabla h_{\eta}^{*}\left(\mathbf{y}_{2}\right)\right\|_{2} \leq \eta d D\left\|\mathbf{y}_{1}-\mathbf{y}_{2}\right\|_{2} \tag{40}
\end{equation*}
$$

Assumption 3 indicates that communications between local learners in D-OCO are modeled via a doubly stochastic matrix P. Let $\overline{\mathbf{z}}_{t}=\frac{1}{n} \sum_{j=1}^{n} \mathbf{z}_{t, j}$ be the average of the dual variables for all learners at round t. By exploiting the special properties of P, we can upper bound the difference between $\overline{\mathbf{z}}_{t}$ and $\mathbf{z}_{t, i}$ for any local learner i at round t, as shown below.
Lemma 7. (Lemma 6 in Zhang et al. (2017)) Let $\overline{\mathbf{z}}_{t}=\frac{1}{n} \sum_{j=1}^{n} \mathbf{z}_{t, j}$ and $\mathbf{z}_{t, i}=\sum_{j \in N_{i}} P_{i j} \mathbf{z}_{t-1, j}+\mathbf{u}$, where \mathbf{u} is a vector and $\|\mathbf{u}\|_{2} \leq G$.Under Assumption 3, for any learner $i \in V$ at round t

$$
\begin{equation*}
\left\|\mathbf{z}_{t, i}-\overline{\mathbf{z}}_{t}\right\|_{2} \leq \frac{\sqrt{n} G}{1-\sigma_{2}(P)}, \tag{41}
\end{equation*}
$$

where $\sigma_{2}(P)$ is the second largest eigenvalue of the communication matrix P.
Let $\mathbf{z}_{t, i}$ and $\mathbf{x}_{t, i}$ be defined as that in Algorithm 1. Denote $\overline{\mathbf{z}}_{t-1}=\frac{1}{n} \sum_{j=1}^{n} \mathbf{z}_{t-1, j}$ and $\overline{\mathbf{x}}_{t}=\nabla h_{\eta}^{*}\left(-\overline{\mathbf{z}}_{t-1}\right)$, then we have

$$
\begin{gather*}
\left\|\overline{\mathbf{x}}_{t}-\mathbf{x}_{t, i}\right\|_{2}=\left\|\nabla h_{\eta}^{*}\left(-\overline{\mathbf{z}}_{t-1}\right)-\nabla h_{\eta}^{*}\left(-\mathbf{z}_{t-1, i}\right)\right\|_{2} \\
\stackrel{(40)}{\leq} \eta d D\left\|\mathbf{z}_{t-1, i}-\overline{\mathbf{z}}_{t-1}\right\|_{2} \tag{42}\\
\stackrel{(14)}{\leq} \eta d D \frac{\sqrt{n} G}{1-\sigma_{2}(P)}=\epsilon,
\end{gather*}
$$

Hence, we have proved Lemma 1.

Proof of Lemma 2

Let $\overline{\mathbf{x}}_{t}=\nabla h_{\eta}^{*}\left(-\overline{\mathbf{z}}_{t-1}\right), \epsilon=\eta d D \frac{\sqrt{n} G}{1-\sigma_{2}(P)}$ and $\mathbf{x}^{*}=\operatorname{argmin}_{\mathbf{x} \in \mathcal{K}} \sum_{j=1}^{n} \sum_{t=1}^{T} f_{t, j}(\mathbf{x})$. Under Assumption 2, by using the convexity of $f_{t, j}(\mathbf{x})$ and triangle inequality, we have

$$
\begin{align*}
f_{t, j}\left(\mathbf{x}_{t, i}\right) & \leq f_{t, j}\left(\overline{\mathbf{x}}_{t}\right)+\left\langle\nabla f_{t, j}\left(\mathbf{x}_{t, i}\right), \mathbf{x}_{t, i}-\overline{\mathbf{x}}_{t}\right\rangle \tag{43}\\
& \leq f_{t, j}\left(\overline{\mathbf{x}}_{t}\right)+G\left\|\mathbf{x}_{t, i}-\overline{\mathbf{x}}_{t}\right\|_{2} \\
f_{t, j}\left(\overline{\mathbf{x}}_{t}\right) & \leq f_{t, j}\left(\mathbf{x}_{t, j}\right)+\left\langle\nabla f_{t, j}\left(\overline{\mathbf{x}}_{t}\right), \mathbf{x}_{t, j}-\overline{\mathbf{x}}_{t}\right\rangle \\
& \leq f_{t, j}\left(\mathbf{x}_{t, j}\right)+G\left\|\mathbf{x}_{t, j}-\overline{\mathbf{x}}_{t}\right\|_{2} \tag{44}
\end{align*}
$$

Then,using Lemma 1, (43) and (44), we have

$$
\begin{align*}
\sum_{t=1}^{T}\left[f_{t, j}\left(\mathbf{x}_{t, i}\right)-f_{t, j}\left(\mathbf{x}^{*}\right)\right] & \stackrel{(43)}{\leq} \sum_{t=1}^{T}\left[f_{t, j}\left(\overline{\mathbf{x}}_{t}\right)+G\left\|\mathbf{x}_{t, i}-\overline{\mathbf{x}}_{t}\right\|_{2}-f_{t, j}\left(\mathbf{x}^{*}\right)\right] \\
& \stackrel{(42),(44)}{\leq} \sum_{t=1}^{T}\left[f_{t, j}\left(\mathbf{x}_{t, j}\right)+G\left\|\mathbf{x}_{t, j}-\overline{\mathbf{x}}_{t}\right\|_{2}-f_{t, j}\left(\mathbf{x}^{*}\right)\right]+\epsilon G T \\
& \stackrel{(42)}{\leq} \sum_{t=1}^{T}\left[f_{t, j}\left(\mathbf{x}_{t, j}\right)-f_{t, j}\left(\mathbf{x}^{*}\right)\right]+2 \epsilon G T \\
& \leq \sum_{t=1}^{T}\left\langle\nabla_{t, j}, \mathbf{x}_{t, j}-\mathbf{x}^{*}\right\rangle+2 \epsilon G T \tag{45}\\
& =\sum_{t=1}^{T}\left[\left\langle\nabla_{t, j}, \mathbf{x}_{t, j}-\overline{\mathbf{x}}_{t}\right\rangle+\left\langle\nabla_{t, j}, \overline{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle\right]+2 \epsilon G T \\
& \leq \sum_{t=1}^{T}\left[G\left\|\mathbf{x}_{t, j}-\overline{\mathbf{x}}_{t}\right\|_{2}+\left\langle\nabla_{t, j}, \overline{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle\right]+2 \epsilon G T \\
& (42) \\
\leq & \sum_{t=1}^{T}\left\langle\nabla_{t, j}, \overline{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle+3 \epsilon G T
\end{align*}
$$

Summing up both side of (45) from $j=1$ to n, we have

$$
\begin{equation*}
\operatorname{Regret}_{i}=\sum_{j=1}^{n} \sum_{t=1}^{T}\left[f_{t, j}\left(\mathbf{x}_{t, i}\right)-f_{t, j}\left(\mathbf{x}^{*}\right)\right] \leq \sum_{j=1}^{n} \sum_{t=1}^{T}\left\langle\nabla_{t, j}, \overline{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle+3 \epsilon G T n \leq n \sum_{t=1}^{T}\left\langle\bar{\nabla}_{t}, \overline{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle+3 \epsilon G T n \tag{46}
\end{equation*}
$$

in which $\bar{\nabla}_{t}=\frac{1}{n} \sum_{j=1}^{n} \nabla_{t, j}$.

Proof of Lemma 3

Lemma 8. For any $\mathbf{v} \sim \mathbb{B}, h_{\eta}(\mathbf{x})$ is upper bounded by $\frac{D}{\eta}$ under Assumption 1, i.e.,

$$
\begin{equation*}
\forall \mathbf{x} \in \mathcal{K}, h_{\eta}(\mathbf{x}) \leq D / \eta \tag{47}
\end{equation*}
$$

By applying weak duality and Lemma 8, we have

$$
\begin{equation*}
D\left(\bar{\lambda}_{1}^{*}, \cdots, \bar{\lambda}_{T}^{*}\right) \leq \min _{\mathbf{x} \in \mathcal{K}}\left\{h_{\eta}(\mathbf{x})+\sum_{t=1}^{T} F_{t}(\mathbf{x})\right\} \leq \max _{\mathbf{x} \in \mathcal{K}} h_{\eta}(\mathbf{x})+\min _{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} F_{t}(\mathbf{x}) \leq \frac{D}{\eta}+\min _{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} F_{t}(\mathbf{x}) . \tag{48}
\end{equation*}
$$

Proof of Lemma 8

(The following proof can also be found in Hazan and Minasyan (2020). Here, we present it in detail).
First, we recall that $h_{\eta}^{*}(\mathbf{y})=\mathbb{E}_{\mathbf{v} \sim \mathbb{B}}\left[\mathcal{M}_{\mathcal{K}}\left(\mathbf{y}+\frac{1}{\eta} \cdot \mathbf{v}\right)\right]$. Then, under Assumption 1, we have $\forall \mathbf{x} \in \mathcal{K}, \mathbf{y} \in \mathbb{R}^{d}$,

$$
\begin{align*}
\langle\mathbf{x}, \mathbf{y}\rangle-h_{\eta}^{*}(\mathbf{y}) & =\langle\mathbf{x}, \mathbf{y}\rangle-\mathbb{E}_{\mathbf{v} \sim \mathbb{B}}\left[\mathcal{M}_{\mathcal{K}}\left(\mathbf{y}+\frac{1}{\eta} \cdot \mathbf{v}\right)\right]=\mathbb{E}_{\mathbf{v} \sim \mathbb{B}}\left[\langle\mathbf{x}, \mathbf{y}\rangle-\max _{\mathbf{x}^{\prime} \in \mathcal{K}}\left\langle\mathbf{y}+\frac{1}{\eta} \cdot \mathbf{v}, \mathbf{x}^{\prime}\right\rangle\right] \\
& \leq \mathbb{E}_{\mathbf{v} \sim \mathbb{B}}\left[\langle\mathbf{x}, \mathbf{y}\rangle-\left\langle\mathbf{y}+\frac{1}{\eta} \cdot \mathbf{v}, \mathbf{x}\right\rangle\right]=\mathbb{E}_{\mathbf{v} \sim \mathbb{B}}\left[\left\langle-\frac{1}{\eta} \cdot \mathbf{v}, \mathbf{x}\right\rangle\right] \tag{49}\\
& \leq \mathbb{E}_{\mathbf{v} \sim \mathbb{B}}\left[\frac{\|\mathbf{v}\|_{2}\|\mathbf{x}\|_{2}}{\eta}\right] \leq \mathbb{E}_{\mathbf{v} \sim \mathbb{B}}\left[\frac{D}{\eta}\right]=\frac{D}{\eta}
\end{align*}
$$

So we have

$$
\begin{equation*}
h_{\eta}(\mathbf{x})=\langle\mathbf{x}, \mathbf{y}\rangle-h_{\eta}^{*}(\mathbf{y}) \leq D / \eta \tag{50}
\end{equation*}
$$

Proof of Lemma 4

We first introduce the following two lemmas.
Lemma 9. For any $\mathbf{v} \sim \mathbb{B}, h_{\eta}^{*}(0)$ is upper bounded by $\frac{D}{\eta}$ under Assumption 1, i.e.,

$$
\begin{equation*}
h_{\eta}^{*}(0) \leq D / \eta . \tag{51}
\end{equation*}
$$

Lemma 10. Let $\bar{\nabla}_{t}=\frac{1}{n} \sum_{j=1}^{n} \nabla_{t, j}$ and $\overline{\mathbf{z}}_{t}=\frac{1}{n} \sum_{j=1}^{n} \mathbf{z}_{t, j}$. Under Assumption 3 we have

$$
\begin{equation*}
\overline{\mathbf{z}}_{t}=\overline{\mathbf{z}}_{t-1}+\bar{\nabla}_{t}, \tag{52}
\end{equation*}
$$

Moreover, if $\mathbf{z}_{0, i}=\mathbf{0}$, there is $\overline{\mathbf{z}}_{0}=\frac{1}{n} \sum_{j=1}^{n} \mathbf{z}_{0, j}=\mathbf{0}$ and we have $\bar{\nabla}_{1: t}=\overline{\mathbf{z}}_{t}$.
Then, we denote $\bar{\Delta}_{t}$ as the difference value of $D\left(\bar{\lambda}_{1}, \cdots, \bar{\lambda}_{T}\right)$ with two consecutive rounds:

$$
\begin{align*}
& \bar{\Delta}_{t}=D\left(\bar{\lambda}_{1}^{t}, \cdots, \bar{\lambda}_{T}^{t}\right)-D\left(\bar{\lambda}_{1}^{t-1}, \cdots, \bar{\lambda}_{T}^{t-1}\right) \\
& =D\left(\bar{\nabla}_{1}, \cdots, \bar{\nabla}_{t}, 0, \cdots, 0\right)-D\left(\bar{\nabla}_{1}, \cdots, \bar{\nabla}_{t-1}, 0, \cdots, 0\right) \tag{53}\\
& =-\left[h_{\eta}^{*}\left(-\bar{\nabla}_{1: t}\right)-h_{\eta}^{*}\left(-\bar{\nabla}_{1: t-1}\right)\right]-F_{t}^{*}\left(\bar{\nabla}_{t}\right)+F_{t}^{*}(0) .
\end{align*}
$$

According to the definition of $\bar{\Delta}_{t}$, we have

$$
\begin{align*}
& \bar{\Delta}_{t} \stackrel{(53)}{=}-\left[h_{\eta}^{*}\left(-\bar{\nabla}_{1: t}\right)-h_{\eta}^{*}\left(-\bar{\nabla}_{1: t-1}\right)\right]-F_{t}^{*}\left(\bar{\nabla}_{t}\right)+F_{t}^{*}(0) \\
& \stackrel{(39)}{\geq}\left\langle\bar{\nabla}_{t}, \nabla h_{\eta}^{*}\left(-\bar{\nabla}_{1: t-1}\right)\right\rangle-\frac{\eta d D}{2}\left\|\bar{\nabla}_{t}\right\|_{2}^{2}-F_{t}^{*}\left(\bar{\nabla}_{t}\right)+F_{t}^{*}(0) \\
&=\left\langle\bar{\nabla}_{t}, \overline{\mathbf{x}}_{t}\right\rangle-F_{t}^{*}\left(\bar{\nabla}_{t}\right)-\frac{\eta d D}{2}\left\|\bar{\nabla}_{t}\right\|_{2}^{2}+F_{t}^{*}(0) \tag{54}\\
& \geq F_{t}\left(\overline{\mathbf{x}}_{t}\right)-\frac{\eta d D}{2} G^{2}+F_{t}^{*}(0) .
\end{align*}
$$

The first inequality is because $h_{\eta}^{*}(\mathbf{y})$ is $\eta d D$-smooth (Lemma 6). The second inequality is due to Assumption 2 and the Fenchel dual identity $F_{t}^{*}\left(\bar{\nabla}_{t}\right)=\left\langle\bar{\nabla}_{t}, \mathbf{x}\right\rangle-F_{t}(\mathbf{x})=0$ for the linear function $F_{t}(\mathbf{x})=\left\langle\bar{\nabla}_{t}, \mathbf{x}\right\rangle$. The last equality is because $\overline{\mathbf{x}}_{t}=$ $\nabla h_{\eta}^{*}\left(-\overline{\mathbf{z}}_{t-1}\right)=\nabla h_{\eta}^{*}\left(-\bar{\nabla}_{1: t-1}\right)$ according to Lemma 10. The inequality (54) can be simplified as follows:

$$
\begin{equation*}
\bar{\Delta}_{t}=D\left(\bar{\nabla}_{1}, \cdots, \bar{\nabla}_{t}, 0, \cdots, 0\right)-D\left(\bar{\nabla}_{1}, \cdots, \bar{\nabla}_{t-1}, 0, \cdots, 0\right) \geq F_{t}\left(\overline{\mathbf{x}}_{t}\right)-\frac{\eta d D}{2} G^{2}+F_{t}^{*}(0) \tag{55}
\end{equation*}
$$

By summing up (55) for all $t=1, \cdots, T$, we have

$$
\begin{align*}
\sum_{t=1}^{T} \bar{\Delta}_{t} & =D\left(\bar{\nabla}_{1}, \cdots, \bar{\nabla}_{T}\right)-D(0, \cdots, 0) \\
& =D\left(\bar{\nabla}_{1}, \cdots, \bar{\nabla}_{T}\right)-\left(-h_{\eta}^{*}(0)-\sum_{t=1}^{T} F_{t}^{*}(0)\right) \tag{56}\\
& \geq \sum_{t=1}^{T} F_{t}\left(\overline{\mathbf{x}}_{t}\right)-\frac{\eta d D}{2} G^{2} T+\sum_{t=1}^{T} F_{t}^{*}(0),
\end{align*}
$$

which further implies that

$$
\begin{align*}
D\left(\bar{\nabla}_{1}, \cdots, \bar{\nabla}_{T}\right) & \geq \sum_{t=1}^{T} F_{t}\left(\overline{\mathbf{x}}_{t}\right)-\frac{\eta d D}{2} G^{2} T-h_{\eta}^{*}(0) \\
& \geq \sum_{t=1}^{T} F_{t}\left(\overline{\mathbf{x}}_{t}\right)-\frac{\eta d D}{2} G^{2} T-\frac{D}{\eta} \tag{57}
\end{align*}
$$

where the last inequality is due to Lemma 9.

Proof of Lemma 9

(The following proof can also be found in Hazan and Minasyan (2020). Here, we present it in detail).
Since $\mathcal{M}_{\mathcal{K}}(0)=0$, by Lipschitzness of $\mathcal{M}_{\mathcal{K}}(\cdot)$ (Lemma 5), we have

$$
\begin{equation*}
\left|\mathcal{M}_{\mathcal{K}}\left(\frac{1}{\eta} \cdot \mathbf{v}\right)\right| \leq D \frac{\|\mathbf{v}\|_{2}}{\eta} \leq \frac{D}{\eta}, \tag{58}
\end{equation*}
$$

where \mathbf{v} is sampled from an unit ball \mathbb{B}. So we have

$$
\begin{equation*}
h_{\eta}^{*}(0)=\mathbb{E}_{\mathbf{v} \sim \mathbb{B}}\left[\mathcal{M}_{\mathcal{K}}\left(\frac{1}{\eta} \cdot \mathbf{v}\right)\right] \leq \frac{D}{\eta} . \tag{59}
\end{equation*}
$$

Proof of Lemma 10

Let $\bar{\nabla}_{t}=\frac{1}{n} \sum_{i=1}^{n} \nabla_{t, i}$ and $\overline{\mathbf{z}}_{t}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{t, i}$ where $\mathbf{z}_{t, i}=\sum_{j \in N_{i}} P_{i j} \mathbf{z}_{t-1, j}+\nabla_{t, i}$. Then, we have

$$
\begin{equation*}
\overline{\mathbf{z}}_{t}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{t, i}=\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j \in N_{i}} P_{i j} \mathbf{z}_{t-1, j}+\nabla_{t, i}\right)=\frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{n} P_{i j} \mathbf{z}_{t-1, j}+\frac{1}{n} \sum_{i=1}^{n} \nabla_{t, i}=\overline{\mathbf{z}}_{t-1}+\bar{\nabla}_{t} \tag{60}
\end{equation*}
$$

where the last equality is because Assumption 3 holds that $\sum_{j=1}^{n} P_{i j}=\sum_{j \in N_{i}} P_{i j}$ and $\sum_{i=1}^{n} P_{i j}=1$. If $\mathbf{z}_{0, i}=\mathbf{0}$, there is $\overline{\mathbf{z}}_{0}=\frac{1}{n} \sum_{j=1}^{n} \mathbf{z}_{0, j}=\mathbf{0}$ and we have

$$
\begin{equation*}
\bar{\nabla}_{1: t}=\sum_{r=1}^{t} \bar{\nabla}_{r}=\sum_{r=1}^{t}\left(\overline{\mathbf{z}}_{r}-\overline{\mathbf{z}}_{r-1}\right)=\overline{\mathbf{z}}_{t} . \tag{61}
\end{equation*}
$$

Proof of Theorem 2

Proof of general convex losses

In Algorithm 2, all the random vectors are independent and identically distributed (i.i.d.), and sampled from an unit ball \mathbb{B} uniformly. At round t, we denote $\xi_{t, i}=\left\{\mathbf{v}_{t, i}^{1}, \cdots, \mathbf{v}_{t, i}^{m}\right\}$ as the randomness of learner i. And the sample randomness is denoted as $\xi_{t}=\left\{\xi_{t, 1}, \cdots, \xi_{t, n}\right\}$ at round t. For brevity, we denote the random variables until round t as $\xi_{[t]}=\left\{\xi_{1}, \cdots, \xi_{t}\right\}$ and correspondingly, for local learner i the random variables are denoted as $\xi_{[t], i}=\left\{\xi_{1, i}, \cdots, \xi_{t, i}\right\}$.

We first introduce following three lemmas.
Lemma 11. (Lemma 15 in (Hazan and Minasyan 2020)) Let $Z_{1}, \cdots, Z_{m} \sim \mathcal{Z}$ be i.i.d. samples of a bounded random vector $Z \in \mathbb{R}^{d},\|Z\|_{2} \leq D$, with mean $\bar{Z}=\mathbb{E}[Z]$. Denote $\bar{Z}_{m}=\frac{1}{m} \sum_{u=1}^{m} Z_{u}$, then $\mathbb{E}_{\mathcal{Z}}\left[\left\|\bar{Z}_{m}-\bar{Z}\right\|_{2}\right] \leq \sqrt{\mathbb{E}_{\mathcal{Z}}\left[\left\|\bar{Z}_{m}-\bar{Z}\right\|_{2}^{2}\right]} \leq \frac{2 D}{\sqrt{m}}$.

Lemma 12. Define $\check{\mathbf{x}}_{t, i}=\nabla h_{\eta}^{*}\left(-\tilde{\mathbf{z}}_{t-1, i}\right), \hat{\mathbf{x}}_{t}=\nabla h_{\eta}^{*}\left(-\tilde{\mathbf{z}}_{t-1}\right)$ where $\tilde{\mathbf{z}}_{t-1}=\frac{1}{n} \sum_{j=1}^{n} \tilde{\mathbf{z}}_{t-1, j}$ and $\tilde{\nabla}_{t, i}, \tilde{\mathbf{z}}_{t-1, i}$ are both defined in Algorithm 2. Then we have

$$
\begin{equation*}
\left\|\check{\mathbf{x}}_{t, i}-\hat{\mathbf{x}}_{t}\right\|_{2} \leq \epsilon \tag{62}
\end{equation*}
$$

where $\epsilon=\eta d D \frac{\sqrt{n} G}{1-\sigma_{2}(P)}$.
Lemma 13. Let $\tilde{\mathbf{z}}_{t, j}, \tilde{\mathbf{x}}_{t, i}$ and $\tilde{\nabla}_{t, i}$ be defined as that in Algorithm 2. Define $\hat{\mathbf{x}}_{t}=\nabla h_{\eta}^{*}\left(-\tilde{\mathbf{z}}_{t-1}\right)$ where $\tilde{\mathbf{z}}_{t-1}=\frac{1}{n} \sum_{j=1}^{n} \tilde{\mathbf{z}}_{t-1, j}$, then we have

$$
\begin{equation*}
\mathbb{E}_{\xi_{[T]}}\left[\left\|\hat{\mathbf{x}}_{t}-\tilde{\mathbf{x}}_{t, i}\right\|_{2}\right] \leq \epsilon+\frac{2 D}{\sqrt{m}} \tag{63}
\end{equation*}
$$

where $\epsilon=\eta d D \frac{\sqrt{n} G}{1-\sigma_{2}(P)}$.
Remark 7. The expected action $\hat{\mathbf{x}}_{t}$ can be viewed as that played by a virtual centralized learner. Lemma 13 indicates that the distance between the expected action $\hat{\mathbf{x}}_{t}$ of the virtual learner and the sampling action $\tilde{\mathbf{x}}_{t, i}$ of learner i is upper bounded. In the following, by Lemma 13, we can convert the global regret analyze to this virtual one.

Define $\mathbf{x}^{*}=\arg \min _{\mathbf{x} \in \mathcal{K}} \sum_{j=1}^{n} \sum_{t=1}^{T} f_{t, j}(\mathbf{x})$ and $\hat{\mathbf{x}}_{t}=\nabla h_{\eta}^{*}\left(-\tilde{\mathbf{z}}_{t-1}\right)$ where $\tilde{\mathbf{z}}_{t-1}=\frac{1}{n} \sum_{j=1}^{n} \tilde{\mathbf{z}}_{t-1, j}$. By exploiting the convexity of $f_{t, j}(\mathbf{x})$ and triangle inequality, we have

$$
\begin{align*}
f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right) & \leq f_{t, j}\left(\hat{\mathbf{x}}_{t}\right)+\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\hat{\mathbf{x}}_{t}\right\rangle \\
& \leq f_{t, j}\left(\hat{\mathbf{x}}_{t}\right)+G\left\|\tilde{\mathbf{x}}_{t, i}-\hat{\mathbf{x}}_{t}\right\|_{2} \tag{64}\\
f_{t, j}\left(\hat{\mathbf{x}}_{t}\right) & \leq f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right)+\left\langle\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right), \tilde{\mathbf{x}}_{t, j}-\hat{\mathbf{x}}_{t}\right\rangle \tag{65}\\
& \leq f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right)+G\left\|\tilde{\mathbf{x}}_{t, j}-\hat{\mathbf{x}}_{t}\right\|_{2}
\end{align*}
$$

By exploiting Lemma 13, (64) and (65), we have

$$
\begin{align*}
\sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left[f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right)-f_{t, j}\left(\mathbf{x}^{*}\right)\right] & \stackrel{(64)}{\leq} \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left[f_{t, j}\left(\hat{\mathbf{x}}_{t}\right)+G\left\|\hat{\mathbf{x}}_{t}-\tilde{\mathbf{x}}_{t, i}\right\|_{2}-f_{t, j}\left(\mathbf{x}^{*}\right)\right] \\
& \stackrel{(63),(65)}{\leq} \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left[f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right)+G\left\|\hat{\mathbf{x}}_{t}-\tilde{\mathbf{x}}_{t, j}\right\|_{2}-f_{t, j}\left(\mathbf{x}^{*}\right)\right]+\left(\epsilon+\frac{2 D}{\sqrt{m}}\right) G T \\
& \stackrel{(63)}{\leq} \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left[f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right)-f_{t, j}\left(\mathbf{x}^{*}\right)\right]+2\left(\epsilon+\frac{2 D}{\sqrt{m}}\right) G T \\
& \leq \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left\langle\tilde{\nabla}_{t, j}, \tilde{\mathbf{x}}_{t, j}-\mathbf{x}^{*}\right\rangle+2\left(\epsilon+\frac{2 D}{\sqrt{m}}\right) G T \tag{66}\\
& =\sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left[\left\langle\tilde{\nabla}_{t, j}, \tilde{\mathbf{x}}_{t, j}-\hat{\mathbf{x}}_{t}\right\rangle+\left\langle\tilde{\nabla}_{t, j}, \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle\right]+2\left(\epsilon+\frac{2 D}{\sqrt{m}}\right) G T \\
& \leq \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left[G\left\|\tilde{\mathbf{x}}_{t, j}-\hat{\mathbf{x}}_{t}\right\|_{2}+\left\langle\tilde{\nabla}_{t, j}, \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle\right]+2\left(\epsilon+\frac{2 D}{\sqrt{m}}\right) G T \\
& \stackrel{(63)}{\leq} \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left\langle\tilde{\nabla}_{t, j}, \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle+3\left(\epsilon+\frac{2 D}{\sqrt{m}}\right) G T .
\end{align*}
$$

Summing up both side from $j=1$ to n, we have

$$
\begin{align*}
\mathbb{E}\left[\text { Regret }_{i}\right] & =\sum_{j=1}^{n} \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left[f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right)-f_{t, j}\left(\mathbf{x}^{*}\right)\right] \\
& \leq \sum_{j=1}^{n} \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left\langle\tilde{\nabla}_{t, j}, \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle+3\left(\epsilon+\frac{2 D}{\sqrt{m}}\right) G T n \tag{67}\\
& \leq n \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left\langle\tilde{\nabla}_{t}, \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle+3\left(\epsilon+\frac{2 D}{\sqrt{m}}\right) G T n
\end{align*}
$$

in which $\tilde{\nabla}_{t}=\frac{1}{n} \sum_{j=1}^{n} \tilde{\nabla}_{t, j} . \tilde{\nabla}_{t, j}$ and $\tilde{\mathbf{x}}_{t, j}$ are defined in Algorithm 2.
Following the same proof framework of Theorem 1, we consider $\tilde{F}_{t}=\left\langle\tilde{\nabla}_{t}, \mathbf{x}\right\rangle$, where $\tilde{\nabla}_{t}$ is denoted as $\tilde{\nabla}_{t}=\frac{1}{n} \sum_{j=1}^{n} \tilde{\nabla}_{t, j}$. And we can derive the following lemma.
Lemma 14. Define $\mathbf{x}^{*}=\arg \min _{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} \sum_{j=1}^{n} f_{t, j}(\mathbf{x}), \tilde{\nabla}_{t}=\frac{1}{n} \sum_{j=1}^{n} \tilde{\nabla}_{t, j}, \tilde{F}_{t}(\mathbf{x})=\left\langle\tilde{\nabla}_{t}, \mathbf{x}\right\rangle$ and $\hat{\mathbf{x}}_{t}=\nabla h_{\eta}^{*}\left(-\tilde{\mathbf{z}}_{t-1}\right)$ where $\tilde{\mathbf{z}}_{t-1}=\frac{1}{n} \sum_{j=1}^{n} \tilde{\mathbf{z}}_{t-1, j}$, then we have

$$
\begin{equation*}
\sum_{t=1}^{T} \tilde{F}_{t}\left(\hat{\mathbf{x}}_{t}\right)-\sum_{t=1}^{T} \tilde{F}_{t}\left(\mathbf{x}^{*}\right) \leq \frac{\eta d D}{2} G^{2} T+\frac{2 D}{\eta} \tag{68}
\end{equation*}
$$

By using Lemma 14, we can obtain that

$$
\begin{align*}
\mathbb{E}\left[\text { Regret }_{i}\right] & \leq n \mathbb{E}\left[\sum_{t=1}^{T}\left\langle\tilde{\nabla}_{t}, \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle\right]+3\left(\epsilon+\frac{2 D}{\sqrt{m}}\right) G T n \\
& =n \mathbb{E}\left[\sum_{t=1}^{T}\left(\tilde{F}_{t}\left(\hat{\mathbf{x}}_{t}\right)-\tilde{F}_{t}\left(\mathbf{x}^{*}\right)\right)\right]+3\left(\epsilon+\frac{2 D}{\sqrt{m}}\right) G T n \\
& \leq n\left\{\frac{\eta d D}{2} G^{2} T+\frac{2 D}{\eta}\right\}+3\left(\epsilon+\frac{2 D}{\sqrt{m}}\right) G T n \tag{69}\\
& =\frac{2 D n}{\eta}+\frac{\eta d D}{2} G^{2} T n+3 \epsilon G T n+\frac{6 D G T n}{\sqrt{m}} \\
& =\frac{2 D n}{\eta}+\eta d D G^{2} T n\left(\frac{1}{2}+\frac{3 \sqrt{n}}{1-\sigma_{2}(P)}\right)+\frac{6 D G T n}{\sqrt{m}}
\end{align*}
$$

Proof of smooth and convex losses

Lemma 15. (Lemma 14 in Hazan and Minasyan (2020)) If the function $f: \mathcal{K} \longrightarrow \mathbb{R}$ is β-smooth, then we have

$$
\begin{equation*}
\langle\nabla f(\mathbf{y})-\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle \leq\|\nabla f(\mathbf{y})-\nabla f(\mathbf{x})\|_{2} \cdot\|\mathbf{y}-\mathbf{x}\|_{2} \leq \beta\|\mathbf{y}-\mathbf{x}\|_{2}^{2} \tag{70}
\end{equation*}
$$

which equals to

$$
\begin{equation*}
\langle\nabla f(\mathbf{y}), \mathbf{y}-\mathbf{x}\rangle \leq\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\beta\|\mathbf{y}-\mathbf{x}\|_{2}^{2} \tag{71}
\end{equation*}
$$

Lemma 16. Let $\tilde{\mathbf{x}}_{t, i}$ be defined as that in Algorithm 2 and define $\hat{\mathbf{x}}_{t}=\nabla h_{\eta}^{*}\left(-\tilde{\mathbf{z}}_{t-1}\right)$ where $\tilde{\mathbf{z}}_{t-1}=\frac{1}{n} \sum_{j=1}^{n} \tilde{\mathbf{z}}_{t-1, j}$, then we have

$$
\begin{gather*}
\mathbb{E}_{\xi_{[T]}}\left[\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\hat{\mathbf{x}}_{t}\right\rangle\right] \leq \epsilon G+\frac{4 \beta D^{2}}{m} \tag{72}\\
\mathbb{E}_{\xi_{[T]}}\left[\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\hat{\mathbf{x}}_{t}\right\rangle\right] \leq \epsilon G+\frac{4 \beta D^{2}}{m} \tag{73}\\
\mathbb{E}_{\xi_{[T]}}\left[\left\langle\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right), \hat{\mathbf{x}}_{t}-\tilde{\mathbf{x}}_{t, j}\right\rangle\right] \leq \epsilon G \tag{74}
\end{gather*}
$$

where $\epsilon=\eta d D \frac{\sqrt{n} G}{1-\sigma_{2}(P)}$.
Using the convexity of local loss functions $f_{t, j}$, triangle inequality and Lemma 16, we have

$$
\begin{align*}
\sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left[f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right)-f_{t, j}\left(\mathbf{x}^{*}\right)\right] & \leq \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left[f_{t, j}\left(\hat{\mathbf{x}}_{t}\right)+\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\hat{\mathbf{x}}_{t}\right\rangle-f_{t, j}\left(\mathbf{x}^{*}\right)\right] \\
& \stackrel{(72)}{\leq} \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left[f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right)+\left\langle\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right), \hat{\mathbf{x}}_{t}-\tilde{\mathbf{x}}_{t, j}\right\rangle-f_{t, j}\left(\mathbf{x}^{*}\right)\right]+\epsilon G T+\frac{4 \beta D^{2} T}{m} \\
& \stackrel{(74)}{\leq} \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left[f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right)-f_{t, j}\left(\mathbf{x}^{*}\right)\right]+2 \epsilon G T+\frac{4 \beta D^{2} T}{m} \tag{75}\\
& \leq \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\mathbf{x}^{*}\right\rangle+2 \epsilon G T+\frac{4 \beta D^{2} T}{m} \\
& =\sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left[\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\hat{\mathbf{x}}_{t}\right\rangle+\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle\right]+2 \epsilon G T+\frac{4 \beta D^{2} T}{m} \\
& \stackrel{(733)}{\leq} \mathbb{E}_{\xi_{[T]}} \sum_{t=1}^{T}\left\langle\tilde{\nabla}_{t, j}, \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle+3 \epsilon G T+\frac{8 \beta D^{2} T}{m}
\end{align*}
$$

where $\tilde{\nabla}_{t, j}=\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right)$.
Summing up both side from $j=1$ to n, we have

$$
\begin{align*}
\mathbb{E}\left[\operatorname{Regret}_{i}\right] & =\sum_{j=1}^{n} \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left[f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right)-f_{t, j}\left(\mathbf{x}^{*}\right)\right] \\
& \leq \sum_{j=1}^{n} \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left\langle\tilde{\nabla}_{t, j}, \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle+3 \epsilon G T n+\frac{8 \beta D^{2} T n}{m} \tag{76}\\
& \leq n \sum_{t=1}^{T} \mathbb{E}_{\xi_{[T]}}\left\langle\tilde{\nabla}_{t}, \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle+3 \epsilon G T n+\frac{8 \beta D^{2} T n}{m}
\end{align*}
$$

in which $\tilde{\nabla}_{t}=\frac{1}{n} \sum_{j=1}^{n} \tilde{\nabla}_{t, j}$ and $\epsilon=\eta d D \frac{\sqrt{n} G}{1-\sigma_{2}(P)}$.

Therefore, we can upper bound the the expected regret as following

$$
\begin{align*}
\mathbb{E}\left[\text { Regret }_{i}\right] & \leq n \mathbb{E}\left[\sum_{t=1}^{T}\left\langle\tilde{\nabla}_{t}, \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle\right]+3 \epsilon G T n+\frac{8 \beta D^{2} T n}{m} \\
& \leq n\left\{\frac{\eta d D}{2} G^{2} T+\frac{2 D}{\eta}\right\}+3 \epsilon G T n+\frac{8 \beta D^{2} T n}{m} \tag{77}\\
& =\frac{2 D n}{\eta}+\frac{\eta d D}{2} G^{2} T n+3 \epsilon G T n+\frac{8 \beta D^{2} T n}{m} \\
& =\frac{2 D n}{\eta}+\eta d D G^{2} T n\left(\frac{1}{2}+\frac{3 \sqrt{n}}{1-\sigma_{2}(P)}\right)+\frac{8 \beta D^{2} T n}{m}
\end{align*}
$$

where the second inequality is due to Lemma 14.

Proof of Lemma 12

Let $\check{\mathbf{x}}_{t, i}=\nabla h_{\eta}^{*}\left(-\tilde{\mathbf{z}}_{t-1, i}\right)$ and $\hat{\mathbf{x}}_{t}=\nabla h_{\eta}^{*}\left(-\tilde{\mathbf{z}}_{t-1}\right)$, where $\tilde{\mathbf{z}}_{t-1}=\frac{1}{n} \sum_{i=1}^{n} \tilde{\mathbf{z}}_{t-1, i}$ and $\tilde{\mathbf{z}}_{t-1, i}$ is defined in Algorithm 2. Then we have

$$
\begin{align*}
\left\|\check{\mathbf{x}}_{t, i}-\hat{\mathbf{x}}_{t}\right\|_{2} & =\left\|\nabla h_{\eta}^{*}\left(-\tilde{\mathbf{z}}_{t-1, i}\right)-\nabla h_{\eta}^{*}\left(-\tilde{\mathbf{z}}_{t-1}\right)\right\|_{2} \\
& \stackrel{(40)}{\leq} \eta d D\left\|\tilde{\mathbf{z}}_{t-1}-\tilde{\mathbf{z}}_{t-1, i}\right\|_{2} \\
& \stackrel{(41)}{\leq} \eta d D \frac{\sqrt{n} G}{1-\eta_{2}(P)} \tag{78}
\end{align*}
$$

where the first inequality is due to the smoothness of $h_{\eta}^{*}(\mathbf{y})$ and the second inequality is due to Lemma 7 .

Proof of Lemma 13

To prove Lemma 13, we define the following auxiliary variable,

$$
\begin{equation*}
\check{\mathbf{x}}_{t, i}=\nabla h_{\eta}^{*}\left(-\tilde{\mathbf{z}}_{t-1, i}\right)=\mathbb{E}_{\mathbf{v}_{t} \sim \mathbb{B}}\left[\mathcal{O}_{\mathcal{K}}\left(-\tilde{\mathbf{z}}_{t-1, i}+\frac{\mathbf{v}_{t}}{\eta}\right)\right] \tag{79}
\end{equation*}
$$

Using triangle inequality, it is easy to obtain that

$$
\begin{equation*}
\left\|\hat{\mathbf{x}}_{t}-\tilde{\mathbf{x}}_{t, i}\right\|_{2} \leq\left\|\hat{\mathbf{x}}_{t}-\check{\mathbf{x}}_{t, i}\right\|_{2}+\left\|\check{\mathbf{x}}_{t, i}-\tilde{\mathbf{x}}_{t, i}\right\|_{2} . \tag{80}
\end{equation*}
$$

By using Lemma 12, we have

$$
\begin{equation*}
\left\|\hat{\mathbf{x}}_{t}-\check{\mathbf{x}}_{t, i}\right\|_{2} \stackrel{(78)}{\leq} \eta d D \frac{\sqrt{n} G}{1-\sigma_{2}(P)} \tag{81}
\end{equation*}
$$

We know $\tilde{\mathbf{x}}_{t, i}$ is the unbiased estimation of $\check{\mathbf{x}}_{t, i}$. Following Hazan and Minasyan (2020), we take expectation over all randomness $\xi_{[T], i}$ with the reverse order $\xi_{T, i}, \cdots, \xi_{1, i}$. It is worth of attention that $\check{\mathbf{x}}_{t, i}$ is deterministic on $\xi_{t, i}$ given $\xi_{[t-1], i}$. Hence, we have

$$
\begin{equation*}
\mathbb{E}_{\xi_{[T], i}}\left[\left\|\check{\mathbf{x}}_{t, i}-\tilde{\mathbf{x}}_{t, i}\right\|_{2}\right]=\mathbb{E}_{\xi_{[t], i}}\left[\left\|\check{\mathbf{x}}_{t, i}-\tilde{\mathbf{x}}_{t, i}\right\|_{2}\right]=\mathbb{E}_{\xi_{[t-1], i}}\left[\mathbb{E}_{\xi_{t, i}}\left[\left\|\check{\mathbf{x}}_{t, i}-\tilde{\mathbf{x}}_{t, i}\right\|_{2} \mid \xi_{[t-1], i}\right]\right] \leq \frac{2 D}{\sqrt{m}} \tag{82}
\end{equation*}
$$

The inequality is due to Lemma 11. Because of $\left\{\xi_{t, 1}, \cdots, \xi_{t, n}\right\}$ i.i.d., we have

$$
\begin{equation*}
\mathbb{E}_{\xi_{[T]}}\left[\left\|\check{\mathbf{x}}_{t, i}-\tilde{\mathbf{x}}_{t, i}\right\|_{2}\right] \leq \frac{2 D}{\sqrt{m}} \tag{83}
\end{equation*}
$$

Therefore, by summing up above inequalities, we have

$$
\begin{align*}
\mathbb{E}_{\xi_{[T]}}\left[\left\|\hat{\mathbf{x}}_{t}-\check{\mathbf{x}}_{t, i}\right\|_{2}\right] & \leq \mathbb{E}_{\xi_{[T]}}\left[\left\|\hat{\mathbf{x}}_{t}-\check{\mathbf{x}}_{t, i}\right\|_{2}+\left\|\check{\mathbf{x}}_{t, i}-\tilde{\mathbf{x}}_{t, i}\right\|_{2}\right] \\
& \leq \eta d D \frac{\sqrt{n} G}{1-\sigma_{2}(P)}+\frac{2 D}{\sqrt{m}}=\epsilon+\frac{2 D}{\sqrt{m}} \tag{84}
\end{align*}
$$

where $\epsilon=\eta d D \frac{\sqrt{n} G}{1-\sigma_{2}(P)}$.

Proof of Lemma 14

Following the same derivation, we define $\tilde{\lambda}_{r}^{t}(r=1, \cdots, T)$ as

$$
\tilde{\lambda}_{r}^{t}= \begin{cases}\tilde{\nabla}_{r}, & \text { if } r \leq t ; \tag{85}\\ 0, & \text { if } r>t .\end{cases}
$$

and consider the difference between $D\left(\tilde{\lambda}_{1}^{t}, \cdots, \tilde{\lambda}_{T}^{t}\right)$ and $D\left(\tilde{\lambda}_{1}^{t-1}, \cdots, \tilde{\lambda}_{T}^{t-1}\right)$

$$
\begin{align*}
\tilde{\Delta}_{t} & =D\left(\tilde{\lambda}_{1}^{t}, \cdots, \tilde{\lambda}_{T}^{t}\right)-D\left(\tilde{\lambda}_{1}^{t-1}, \cdots, \tilde{\lambda}_{T}^{t-1}\right) \\
& =D\left(\tilde{\nabla}_{1}, \cdots, \tilde{\nabla}_{t-1}, \tilde{\nabla}_{t}, \cdots, 0\right)-D\left(\tilde{\nabla}_{1}, \cdots, \tilde{\nabla}_{t-1}, 0, \cdots, 0\right) \\
& \stackrel{(39)}{\geq}\left\langle\tilde{\nabla}_{t}, \nabla h_{\eta}^{*}\left(-\tilde{\nabla}_{1: t-1}\right)\right\rangle-\tilde{F}_{t}^{*}\left(\tilde{\nabla}_{t}\right)-\frac{\eta d D}{2} G^{2}+\tilde{F}_{t}^{*}(0) \tag{86}\\
& =\left\langle\tilde{\nabla}_{t}, \hat{\mathbf{x}}_{t}\right\rangle-\tilde{F}_{t}^{*}\left(\tilde{\nabla}_{t}\right)-\frac{\eta d D}{2} G^{2}+\tilde{F}_{t}^{*}(0) \\
& =\tilde{F}_{t}\left(\hat{\mathbf{x}}_{t}\right)-\frac{\eta d D}{2} G^{2}+\tilde{F}_{t}^{*}(0),
\end{align*}
$$

where the first inequality is due to the smoothness of $h_{\eta}^{*}(\mathbf{y})$, the third equality is due to $\hat{\mathbf{x}}_{t}=\nabla h_{\eta}^{*}\left(-\tilde{\mathbf{z}}_{t-1}\right)=\nabla h_{\eta}^{*}\left(-\tilde{\nabla}_{1: t-1}\right)$ (Lemma 10) and the last equality is due to $\tilde{F}_{t}^{*}\left(\tilde{\nabla}_{t}\right)=\left\langle\tilde{\nabla}_{t}, \hat{\mathbf{x}}_{t}\right\rangle-\tilde{F}_{t}\left(\hat{\mathbf{x}}_{t}\right)=0$ for the linear function $\tilde{F}_{t}(\mathbf{x})=\left\langle\tilde{\nabla}_{t}, \mathbf{x}\right\rangle$. Then, following the similar derivation of Theorem 1 , it is easy to obtain that

$$
\begin{equation*}
\sum_{t=1}^{T}\left\langle\tilde{\nabla}_{t}, \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle=\sum_{t=1}^{T} \tilde{F}_{t}\left(\hat{\mathbf{x}}_{t}\right)-\sum_{t=1}^{T} \tilde{F}_{t}\left(\mathbf{x}^{*}\right) \leq \sum_{t=1}^{T} \tilde{F}_{t}\left(\hat{\mathbf{x}}_{t}\right)-\min _{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} \tilde{F}_{t}(\mathbf{x}) \leq \frac{\eta d D}{2} G^{2} T+\frac{2 D}{\eta} . \tag{87}
\end{equation*}
$$

Proof of Lemma 16

To prove Lemma 16, we define the following auxiliary variable,

$$
\begin{equation*}
\check{\mathbf{x}}_{t, i}=\nabla h_{\eta}^{*}\left(-\tilde{\mathbf{z}}_{t-1, i}\right) . \tag{88}
\end{equation*}
$$

proof of (72)
Using triangle inequality and Lemma 12, we have

$$
\begin{align*}
\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\hat{\mathbf{x}}_{t}\right\rangle & =\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle+\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \check{\mathbf{x}}_{t, i}-\hat{\mathbf{x}}_{t}\right\rangle \\
& \leq\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle+G\left\|\check{\mathbf{x}}_{t, i}-\hat{\mathbf{x}}_{t}\right\|_{2} \tag{89}\\
& \stackrel{(78))}{\leq}\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle+\epsilon G,
\end{align*}
$$

where $\epsilon=\eta d D \frac{\sqrt{n} G}{1-\sigma_{2}(P)}$.
Now, proceed to bound the first term. By using Lemma 15, the first term can be rewritten as

$$
\begin{equation*}
\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle \leq\left\langle\nabla f_{t, j}\left(\check{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle+\beta\left\|\tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\|_{2}^{2} . \tag{90}
\end{equation*}
$$

Moreover, $\tilde{\mathbf{x}}_{t, i}$ is is the unbiased estimation of $\check{\mathbf{x}}_{t, i}$ and $\nabla f_{t, j}\left(\check{\mathbf{x}}_{t, i}\right)$ is independent of $\tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}$ with respect to $\xi_{t, i}$ condition on $\xi_{[t-1], i \cdot}$. Following Hazan and Minasyan (2020), we take expectation over all randomness $\xi_{[T], i}$ with the reverse order $\xi_{T, i}, \cdots, \xi_{1, i}$

$$
\begin{align*}
\mathbb{E}_{\xi_{[T], i}}\left[\left\langle\nabla f_{t, j}\left(\check{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle\right] & =\mathbb{E}_{[[t], i}\left[\left\langle\nabla f_{t, j}\left(\check{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle\right] \\
& =\mathbb{E}_{\xi_{[t-1], i}}\left[\mathbb{E}_{\xi_{t, i}}\left[\left\langle\nabla f_{t, j}\left(\check{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle \mid \xi_{[t-1], i}\right]\right]=0 . \tag{91}
\end{align*}
$$

So combining with Lemma 11 and Lemma 15, we have

$$
\begin{align*}
\mathbb{E}_{\xi[T], i}\left[\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle\right] & =\mathbb{E}_{\xi_{[t], i}}\left[\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle\right] \\
& \leq \mathbb{E}_{[[t], i}\left[\left\langle\nabla f_{t, j}\left(\check{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle+\beta\left\|\tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\|_{2}^{2}\right] \leq \frac{4 \beta D^{2}}{m} . \tag{92}
\end{align*}
$$

Because of $\left\{\xi_{t, 1}, \cdots, \xi_{t, n}\right\}$ i.i.d., we have

$$
\begin{equation*}
\mathbb{E}_{\xi_{[T]}}\left[\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle\right] \leq \frac{4 \beta D^{2}}{m} . \tag{93}
\end{equation*}
$$

After bounding the first term of (89), we have

$$
\begin{equation*}
\mathbb{E}_{\xi_{[T]}}\left[\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\hat{\mathbf{x}}_{t}\right\rangle\right] \leq \frac{4 \beta D^{2}}{m}+\epsilon G \tag{94}
\end{equation*}
$$

proof of (73)

$$
\begin{align*}
\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\hat{\mathbf{x}}_{t}\right\rangle & =\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle+\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \check{\mathbf{x}}_{t, j}-\hat{\mathbf{x}}_{t}\right\rangle \\
& \leq\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle+G\left\|\check{\mathbf{x}}_{t, j}-\hat{\mathbf{x}}_{t}\right\|_{2} \tag{95}\\
& \stackrel{(78)}{\leq}\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle+\epsilon G .
\end{align*}
$$

The last inequality is because of Lemma 12. Also, by using Lemma 15 , we have

$$
\begin{equation*}
\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle \leq\left\langle\nabla f_{t, j}\left(\check{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle+\beta\left\|\tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\|_{2}^{2} \tag{96}
\end{equation*}
$$

For the same reason that $\tilde{\mathbf{x}}_{t, j}$ is is the unbiased estimation of $\check{\mathbf{x}}_{t, j}$ and $\nabla f_{t, j}\left(\check{\mathbf{x}}_{t, j}\right)$ is independent of $\tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}$ with respect to $\xi_{t, j}$ condition on $\xi_{[t-1], j}$. So combining with Lemma 11 and Lemma 15, we take expectation over $\xi_{[T], j}$ with the reverse order $\xi_{T, j}, \cdots, \xi_{1, j}$:

$$
\begin{align*}
\mathbb{E}_{\xi_{[T], j}}\left[\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle\right] & =\mathbb{E}_{\xi_{[t], j}}\left[\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle\right] \\
& \leq \mathbb{E}_{\xi_{[t], j}}\left[\left\langle\nabla f_{t, j}\left(\check{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle+\beta\left\|\tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\|_{2}^{2}\right] \leq \frac{4 \beta D^{2}}{m} \tag{97}
\end{align*}
$$

Because of $\left\{\xi_{t, 1}, \cdots, \xi_{t, n}\right\}$ i.i.d., we have

$$
\begin{equation*}
\mathbb{E}_{\xi_{[T]}}\left[\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle\right] \leq \frac{4 \beta D^{2}}{m} \tag{98}
\end{equation*}
$$

So $\mathbb{E}_{\xi_{[T]}}\left[\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\hat{\mathbf{x}}_{t}\right\rangle\right]$ is upper bounded by

$$
\begin{equation*}
\mathbb{E}_{\xi_{[T]}}\left[\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\hat{\mathbf{x}}_{t}\right\rangle\right] \leq \frac{4 \beta D^{2}}{m}+\epsilon G \tag{99}
\end{equation*}
$$

proof of (74)

$$
\begin{align*}
\left\langle\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right), \hat{\mathbf{x}}_{t}-\tilde{\mathbf{x}}_{t, j}\right\rangle & =\left\langle\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right), \hat{\mathbf{x}}_{t}-\check{\mathbf{x}}_{t, j}\right\rangle+\left\langle\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right), \check{\mathbf{x}}_{t, j}-\tilde{\mathbf{x}}_{t, j}\right\rangle \\
& \leq G\left\|\hat{\mathbf{x}}_{t}-\check{\mathbf{x}}_{t, j}\right\|_{2}+\left\langle\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right), \check{\mathbf{x}}_{t, j}-\tilde{\mathbf{x}}_{t, j}\right\rangle \tag{100}\\
& \stackrel{(78)}{\leq} \epsilon G+\left\langle\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right), \check{\mathbf{x}}_{t, j}-\tilde{\mathbf{x}}_{t, j}\right\rangle,
\end{align*}
$$

where $\epsilon=\eta d D \frac{\sqrt{n} G}{1-\sigma_{2}(P)}$.
Also, $\tilde{\mathbf{x}}_{t, j}$ is is the unbiased estimation of $\check{\mathbf{x}}_{t, j}$ and $\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right)$ is independent on $\check{\mathbf{x}}_{t, j}-\tilde{\mathbf{x}}_{t, j}$ with respect to $\xi_{t, j}$ when condition on $\xi_{[t-1], j}$. So we take expectation over $\xi_{[T], j}$ with the reverse order $\xi_{T, j}, \cdots, \xi_{1, j}$:

$$
\begin{align*}
\mathbb{E}_{\xi_{[T], j}}\left[\left\langle\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right), \check{\mathbf{x}}_{t, j}-\tilde{\mathbf{x}}_{t, j}\right\rangle\right] & =\mathbb{E}_{\xi_{[t], j}}\left[\left\langle\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right), \check{\mathbf{x}}_{t, j}-\tilde{\mathbf{x}}_{t, j}\right\rangle\right] \\
& =\mathbb{E}_{\xi_{[t-1], j}}\left[\mathbb{E}_{\xi_{t, j}}\left[\left\langle\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right), \check{\mathbf{x}}_{t, j}-\tilde{\mathbf{x}}_{t, j}\right\rangle \mid \xi_{[t-1], j}\right]\right]=0 \tag{101}
\end{align*}
$$

Because of $\left\{\xi_{t, 1}, \cdots, \xi_{t, n}\right\}$ i.i.d., we have

$$
\begin{equation*}
\mathbb{E}_{\xi_{[T]}}\left[\left\langle\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right), \check{\mathbf{x}}_{t, j}-\tilde{\mathbf{x}}_{t, j}\right\rangle\right]=0 \tag{102}
\end{equation*}
$$

Therefore, the upper bound of $\mathbb{E}_{\xi_{[T]}}\left[\left\langle\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right), \hat{\mathbf{x}}_{t}-\tilde{\mathbf{x}}_{t, j}\right\rangle\right]$ is

$$
\begin{equation*}
\mathbb{E}_{\xi_{[T]}}\left[\left\langle\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right), \hat{\mathbf{x}}_{t}-\tilde{\mathbf{x}}_{t, j}\right\rangle\right] \leq \epsilon G \tag{103}
\end{equation*}
$$

Proof of Theorem 3

Proof of general convex losses

Lemma 17. (Proposition 17 in (Hazan and Minasyan 2020)) Suppose $\left\{\mathbf{s}_{1}, \cdots, s_{m}\right\}$ is martingale-difference sequence defined on $\left\{\mathcal{F}_{1}, \cdots, \mathcal{F}_{m}\right\}$. So $\left\{\mathbf{s}_{1}, \cdots, \mathbf{s}_{m}\right\}$ holds that $\forall u \in[1, m], \mathbb{E}\left[\mathbf{s}_{u} \mid \mathcal{F}_{u-1}\right]=0$ and $\exists c_{u}>0,\left\|\mathbf{s}_{u}\right\|_{2} \leq c_{u}$. Then for all $r \geq 0$

$$
\begin{equation*}
\operatorname{Pr}\left(\left\|\sum_{u=1}^{m} \mathbf{s}_{u}\right\|_{2} \geq r\right) \leq 2 \exp \left\{-\frac{r^{2}}{2 \sum_{u=1}^{m} c_{u}^{2}}\right\} \tag{104}
\end{equation*}
$$

We first define the following auxiliary variable,

$$
\begin{equation*}
\check{\mathbf{x}}_{t, i}=\nabla h_{\eta}^{*}\left(-\tilde{\mathbf{z}}_{t-1, i}\right) . \tag{105}
\end{equation*}
$$

Then, $\tilde{\mathbf{x}}_{t, i}=\frac{1}{m} \sum_{u=1}^{m} \tilde{\mathbf{x}}_{t, i}^{u}$ is is the unbiased estimation of $\check{\mathbf{x}}_{t, i}$ Denote $\mathbf{s}_{u}=\frac{1}{m}\left(\tilde{\mathbf{x}}_{t, i}^{u}-\check{\mathbf{x}}_{t, i}\right)$ for learner i at round t, which is the martingale-difference sequence on $\left\{\mathcal{F}_{1}, \cdots, \mathcal{F}_{m}\right\}=\left\{\mathbf{v}_{t, i}^{1}, \cdots, \mathbf{v}_{t, i}^{m}\right\}=\xi_{t, i}$. Then, we have $\sum_{u=1}^{m} \mathbf{s}_{u}=\tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}$ as well as $\mathbb{E}_{\mathbf{v}_{t, i}^{u}}\left[\mathbf{s}_{u} \mid \mathbf{v}_{t, i}^{1}, \cdots, \mathbf{v}_{t, i}^{u-1}\right]=0$ due to the unbiased estimation and i.i.d. samples from an unit ball \mathbb{B}. According to Assumption 1, there is $\left\|\mathbf{s}_{u}\right\|_{2}=\left\|\frac{1}{m}\left(\tilde{\mathbf{x}}_{t, i}^{u}-\check{\mathbf{x}}_{t, i}\right)\right\|_{2}=\frac{\left\|\tilde{\mathbf{x}}_{t, i}^{u}-\check{\mathbf{x}}_{t, i}\right\|_{2}}{m} \leq \frac{2 D}{m}=c_{t}$. By Lemma 17, we can obtain that

$$
\begin{equation*}
\operatorname{Pr}_{\xi_{t, i}}\left(\left\|\frac{1}{m} \sum_{u=1}^{m}\left(\tilde{\mathbf{x}}_{t, i}^{u}-\check{\mathbf{x}}_{t, i}\right)\right\|_{2} \geq r\right) \leq 2 \exp \left\{-\frac{r^{2}}{\frac{8 D^{2}}{m}}\right\} \tag{106}
\end{equation*}
$$

For some $\delta>0$, let $r=2 D \sqrt{\frac{2}{m} \ln \frac{2 T}{\delta}}$ and there is

$$
\begin{equation*}
\operatorname{Pr}_{\xi_{t, i}}\left(\left\|\frac{1}{m} \sum_{u=1}^{m}\left(\tilde{\mathbf{x}}_{t, i}^{u}-\check{\mathbf{x}}_{t, i}\right)\right\|_{2} \geq r\right) \leq \frac{\delta}{T} \tag{107}
\end{equation*}
$$

Because of $\tilde{\mathbf{x}}_{t, i}=\frac{1}{m} \sum_{u=1}^{m} \tilde{\mathbf{x}}_{t, i}^{u}$ and $\left\{\xi_{t, 1}, \cdots, \xi_{t, n}\right\}$ i.i.d., for the whole interval $[1, T]$ the union bound is

$$
\begin{equation*}
\mathbf{P r}_{\xi_{[T]}}\left(\forall t \in[1, T], \quad\left\|\tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\|_{2} \geq r\right) \leq \delta \tag{108}
\end{equation*}
$$

which also means

$$
\begin{equation*}
\operatorname{Pr}_{\xi_{[T]}}\left(\forall t \in[1, T],\left\|\tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\|_{2} \leq r\right) \geq 1-\delta \tag{109}
\end{equation*}
$$

Therefore, with at least $1-\delta$ probability, $\left\|\hat{\mathbf{x}}_{t}-\tilde{\mathbf{x}}_{t, i}\right\|_{2}$ is bounded as following

$$
\begin{equation*}
\left\|\hat{\mathbf{x}}_{t}-\tilde{\mathbf{x}}_{t, i}\right\|_{2} \leq\left\|\hat{\mathbf{x}}_{t}-\check{\mathbf{x}}_{t, i}\right\|_{2}+\left\|\check{\mathbf{x}}_{t, i}-\tilde{\mathbf{x}}_{t, i}\right\|_{2} \stackrel{(78),(109)}{\leq} \epsilon+r \tag{110}
\end{equation*}
$$

where $r=2 D \sqrt{\frac{2}{m} \ln \frac{2 T}{\delta}}$ and $\epsilon=\eta d D \frac{\sqrt{n} G}{1-\sigma_{2}(P)}$.
Following the same proof framework of Theorem 2, we have

$$
\begin{equation*}
\operatorname{Regret}_{i} \leq n\left\{\sum_{t=1}^{T}\left\langle\tilde{\nabla}_{t}, \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle\right\}+3(\epsilon+r) G T n \tag{111}
\end{equation*}
$$

Using Lemma 14, with at least $1-\delta$ probability, Algorithm 2 guarantees

$$
\begin{align*}
\text { Regret }_{i} & \leq n\left\{\sum_{t=1}^{T}\left\langle\tilde{\nabla}_{t}, \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle\right\}+3(\epsilon+r) G T n \\
& \leq n\left\{\frac{\eta d D}{2} G^{2} T+\frac{2 D}{\eta}\right\}+3(\epsilon+r) G T n \tag{112}\\
& =\frac{2 D n}{\eta}+\frac{\eta d D}{2} G^{2} T n+3(\epsilon+r) G T n \\
& =\frac{2 D n}{\eta}+\eta d D G^{2} T n\left(\frac{1}{2}+\frac{3 \sqrt{n}}{1-\sigma_{2}(P)}\right)+3 r G T n
\end{align*}
$$

where $r=2 D \sqrt{\frac{2}{m} \ln \frac{2 T}{\delta}}$.

Proof of smooth and convex losses

Denote \mathbf{g}_{t} satisfies $\left\|\mathbf{g}_{t}\right\|_{2} \leq G$ and $\mathbb{E}\left[\left\langle\mathbf{g}_{t}, \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle \mid \xi_{1, j}, \cdots, \xi_{t-1, j}\right]=0$. Let $\mathbf{s}_{t}=\left\langle\mathbf{g}_{t}, \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle$ for learner j at round t, which is the martingale-difference sequence on $\left\{\mathcal{F}_{1}, \cdots, \mathcal{F}_{T}\right\}=\left\{\xi_{1, j}, \cdots, \xi_{T, j}\right\}$. Because $\mathbb{E}\left[\mathbf{s}_{t} \mid \xi_{1, j}, \cdots, \xi_{t-1, j}\right]=0$ and $\left\|\mathbf{s}_{t}\right\|_{2}=\left\|\left\langle\mathbf{g}_{t}, \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle\right\|_{2} \leq G\left\|\tilde{\mathbf{x}}_{t, j}-\hat{\mathbf{x}}_{t, j}\right\|_{2} \leq 2 G D=c_{t}$. By Lemma 17, it can be obtained that

$$
\begin{equation*}
\operatorname{Pr}_{\xi_{[T], j}}\left(\left|\sum_{t=1}^{T}\left\langle\mathbf{g}_{t}, \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle\right| \geq r^{\prime}\right) \leq 2 \exp \left\{-\frac{r^{\prime 2}}{8 G^{2} D^{2} T}\right\}=\delta^{\prime} \tag{113}
\end{equation*}
$$

As it is mentioned in the previous section, for some $\delta>0$, there is $\left\|\tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\|_{2} \leq r$, in which $r=2 D \sqrt{\frac{2}{m} \ln \frac{2 T}{\delta}}$. Now, let $\delta^{\prime}=\frac{\delta}{2}$ and $r^{\prime}=2 D G \sqrt{2 T \ln \frac{2}{\delta^{\prime}}}=2 D G \sqrt{2 T \ln \frac{4}{\delta}}$. Then, there is

$$
\begin{equation*}
\operatorname{Pr}_{\xi_{[T], j}}\left(\left|\sum_{t=1}^{T}\left\langle\mathbf{g}_{t}, \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle\right| \geq r^{\prime}\right) \leq \delta^{\prime} \tag{114}
\end{equation*}
$$

Because of $\left\{\xi_{t, 1}, \cdots, \xi_{t, n}\right\}$ i.i.d., for the whole interval $[1, T]$ the union bound is

$$
\begin{equation*}
\operatorname{Pr}_{\xi_{[T]}}\left(\left|\sum_{t=1}^{T}\left\langle\mathbf{g}_{t}, \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle\right| \geq r^{\prime}\right) \leq \delta^{\prime} \tag{115}
\end{equation*}
$$

which also means

$$
\begin{equation*}
\operatorname{Pr}_{\xi_{[T]}}\left(\left|\sum_{t=1}^{T}\left\langle\mathbf{g}_{t}, \tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\rangle\right| \leq r^{\prime}\right) \geq 1-\delta^{\prime} \tag{116}
\end{equation*}
$$

Following the same proof framework of Lemma 16, we can derive

$$
\begin{align*}
\sum_{t=1}^{T}\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\hat{\mathbf{x}}_{t}\right\rangle & =\sum_{t=1}^{T}\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle+\sum_{t=1}^{T}\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \check{\mathbf{x}}_{t, i}-\hat{\mathbf{x}}_{t}\right\rangle \\
& \stackrel{(78)}{\leq} \sum_{t=1}^{T}\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle+\epsilon G T \tag{117}\\
& \stackrel{(71)}{\leq} \sum_{t=1}^{T}\left\langle\nabla f_{t, j}\left(\check{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle+\beta \sum_{t=1}^{T}\left\|\tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\|_{2}^{2}+\epsilon G T \\
& \stackrel{(116),(109)}{\leq} r^{\prime}+\beta r^{2} T+\epsilon G T
\end{align*}
$$

where $r=2 D \sqrt{\frac{2}{m} \ln \frac{2 T}{\delta}}, r^{\prime}=2 D G \sqrt{2 T \ln \frac{4}{\delta}}$ and $\epsilon=\eta d D \frac{\sqrt{n} G}{1-\sigma_{2}(P)}$. The first inequality is due to Lemma 12 . The second inequality is due to Lemma 15. The last inequality is because that $\nabla f_{t, j}\left(\check{\mathbf{x}}_{t, i}\right)$ is independent of $\tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}$ condition on $\xi_{[t-1], i}$ and satisfies $\mathbb{E}\left[\left\langle\nabla f_{t, j}\left(\check{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle \mid \xi_{1, i}, \cdots, \xi_{t-1, i}\right]=0$. Hence, $\sum_{t=1}^{T}\left\langle\nabla f_{t, j}\left(\check{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\check{\mathbf{x}}_{t, i}\right\rangle \leq r^{\prime}$ with at least $1-\delta$ probability. Meanwhile, we also have $\left\|\tilde{\mathbf{x}}_{t, j}-\check{\mathbf{x}}_{t, j}\right\|_{2} \leq r$.

By the same way, we can obtain that

$$
\begin{align*}
& \sum_{t=1}^{T}\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, i}\right), \tilde{\mathbf{x}}_{t, i}-\hat{\mathbf{x}}_{t}\right\rangle \leq \epsilon G T+\beta r^{2} T+r^{\prime} \tag{118}\\
& \sum_{t=1}^{T}\left\langle\nabla f_{t, j}\left(\tilde{\mathbf{x}}_{t, j}\right), \tilde{\mathbf{x}}_{t, j}-\hat{\mathbf{x}}_{t}\right\rangle \leq \epsilon G T+\beta r^{2} T+r^{\prime} \tag{119}\\
& \sum_{t=1}^{T}\left\langle\nabla f_{t, j}\left(\hat{\mathbf{x}}_{t}\right), \hat{\mathbf{x}}_{t}-\tilde{\mathbf{x}}_{t, j}\right\rangle \leq \epsilon G T+r^{\prime} \tag{120}
\end{align*}
$$

Therefore, we can also obtain

$$
\begin{equation*}
\operatorname{Regret}_{i} \leq n\left\{\sum_{t=1}^{T}\left\langle\tilde{\nabla}_{t}, \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle\right\}+3 \epsilon G T n+3 r^{\prime} n+2 \beta r^{2} T n \tag{121}
\end{equation*}
$$

Using Lemma 14, with at least $1-\delta$ probability, Algorithm 2 guarantees

$$
\begin{align*}
\operatorname{Regret}_{i} & \leq n\left\{\sum_{t=1}^{T}\left\langle\tilde{\nabla}_{t}, \hat{\mathbf{x}}_{t}-\mathbf{x}^{*}\right\rangle\right\}+3 \epsilon G T n+3 r^{\prime} n+2 \beta r^{2} T n \\
& \leq n\left\{\frac{\eta d D}{2} G^{2} T+\frac{2 D}{\eta}\right\}+3 \epsilon G T n+3 r^{\prime} n+2 \beta r^{2} T n \tag{122}\\
& =\frac{2 D n}{\eta}+\eta d D G^{2} T n\left(\frac{1}{2}+\frac{3 \sqrt{n}}{1-\sigma_{2}(P)}\right)+3 r^{\prime} n+2 \beta r^{2} T n
\end{align*}
$$

where $r^{\prime}=2 D G \sqrt{2 T \ln \frac{4}{\delta}}$ and $r=2 D \sqrt{\frac{2}{m} \ln \frac{2 T}{\delta}}$.

Proof of Theorem 4

Algorithm 3 can be reduced to Algorithm 2 with new settings, e.g., the number of rounds $T^{\prime}=T / k$ and the block losses $f_{t^{\prime}, i}^{\prime}=\sum_{t=\left(t^{\prime}-1\right) \cdot k+1}^{t^{\prime} \cdot k} f_{t, i}$ in the reduced game. Here, we list some crucial changes.

- In Assumption 1, the domain set in the reduced game is upper bounded by $D^{\prime}=D$.
- In Assumption 2, for the block loss function $f_{t^{\prime}, i}^{\prime}=\sum_{t=\left(t^{\prime}-1\right) \cdot k+1}^{t^{\prime} \cdot k} f_{t, i}$, the Lipschitz constant in the reduced game is $G^{\prime}=k \cdot G$.
- If $f_{t, i}$ is β-smooth, then the block loss function $f_{t^{\prime}, i}^{\prime}=\sum_{t=\left(t^{\prime}-1\right) \cdot k+1}^{t^{\prime} \cdot k} f_{t, i}$ is $(k \cdot \beta)$-smooth.

Proof of general convex losses

After reduction, Algorithm 3 also guarantees Theorem 2 for general convex losses.

$$
\begin{align*}
\mathbb{E}\left[\text { Regret }_{i}\right] & \leq \frac{2 D^{\prime} n}{\eta}+\eta d D G^{\prime 2} T^{\prime} n L+\frac{6 D^{\prime} G^{\prime} T^{\prime} n}{\sqrt{m}} \tag{123}\\
& =\frac{2 D n}{\eta}+\eta d D(k \cdot G)^{2} T^{\prime} n L+\frac{6 D(k \cdot G) T^{\prime} n}{\sqrt{m}},
\end{align*}
$$

where $L=\frac{1}{2}+\frac{3 \sqrt{n}}{1-\sigma_{2}(P)}$. With $\eta=\frac{1}{k G} \sqrt{\frac{2}{d L T^{\prime}}}$ and $m=k$

$$
\begin{equation*}
\mathbb{E}\left[\text { Regret }_{i}\right] \leq 2 k D G n \sqrt{2 d L T^{\prime}}+6 D \sqrt{k} G T^{\prime} n . \tag{124}
\end{equation*}
$$

Let $T^{\prime}=T^{\frac{1}{2}}$ and $k=T^{\frac{1}{2}}$

$$
\begin{equation*}
\mathbb{E}\left[\text { Regret }_{i}\right] \leq n D G(2 \sqrt{2 d L}+6) T^{\frac{3}{4}}=\mathcal{O}\left(T^{\frac{3}{4}}\right) . \tag{125}
\end{equation*}
$$

Proof of smooth and convex losses

After reduction, Algorithm 3 also guarantees Theorem 2 for smooth and convex losses.

$$
\begin{align*}
\mathbb{E}\left[\operatorname{Regret}_{i}\right] & \leq \frac{2 D^{\prime} n}{\eta}+\eta d D G^{\prime 2} T^{\prime} n L+\frac{8 \beta^{\prime} D^{\prime 2} T^{\prime} n}{m} \\
& =\frac{2 D n}{\eta}+\eta d D(k \cdot G)^{2} T^{\prime} n L+\frac{8(k \cdot \beta) D^{2} T^{\prime} n}{m}, \tag{126}
\end{align*}
$$

where $L=\frac{1}{2}+\frac{3 \sqrt{n}}{1-\sigma_{2}(P)}$. With $\eta=\frac{1}{k G} \sqrt{\frac{2}{d L T^{\prime}}}$ and $m=k$

$$
\begin{equation*}
\mathbb{E}\left[\text { Regret }_{i}\right] \leq 2 k D G n \sqrt{2 d L T^{\prime}}+8 \beta D^{2} T^{\prime} n . \tag{127}
\end{equation*}
$$

Let $T^{\prime}=T^{\frac{2}{3}}$ and $k=T^{\frac{1}{3}}$

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Regret}_{i}\right] \leq n D(2 G \sqrt{2 d L}+8 \beta D) T^{\frac{2}{3}}=\mathcal{O}\left(T^{\frac{2}{3}}\right) . \tag{128}
\end{equation*}
$$

Proof of Theorem 5

Following the same proof framework as Theorem 4, we list some crucial changes after reduction.

- In Assumption 1, the domain set in the reduced game is upper bounded by $D^{\prime}=D$.
- In Assumption 2, for the block loss function $f_{t^{\prime}, i}^{\prime}=\sum_{t=\left(t^{\prime}-1\right) \cdot k+1}^{t^{\prime} \cdot k} f_{t, i}$, the Lipschitz constant in the reduced game is $G^{\prime}=k \cdot G$.
- If $f_{t, i}$ is β-smooth, then the block loss function $f_{t^{\prime}, i}^{\prime}=\sum_{t=\left(t^{\prime}-1\right) \cdot k+1}^{t^{\prime} \cdot k} f_{t, i}$ is $(k \cdot \beta)$-smooth.

Proof of general convex losses

After reduction, Algorithm 3 also guarantees Theorem 3 with $1-\delta$ probability for general convex losses.

$$
\begin{align*}
\operatorname{Regret}_{i} & \leq \frac{2 D^{\prime} n}{\eta}+\eta d D^{\prime} G^{\prime 2} T^{\prime} n L+3 r G^{\prime} T^{\prime} n \\
& =\frac{2 D^{\prime} n}{\eta}+\eta d D^{\prime} G^{\prime 2} T^{\prime} n L+6 D^{\prime} G^{\prime} T^{\prime} n \sqrt{\frac{2}{m} \ln \frac{2 T^{\prime}}{\delta}} \tag{129}\\
& =\frac{2 D n}{\eta}+\eta d D(k \cdot G)^{2} T^{\prime} n L+6 D(k \cdot G) T^{\prime} n \sqrt{\frac{2}{m} \ln \frac{2 T^{\prime}}{\delta}}
\end{align*}
$$

where $L=\frac{1}{2}+\frac{3 \sqrt{n}}{1-\sigma_{2}(P)}$ and $r=2 D^{\prime} \sqrt{\frac{2}{m} \ln \frac{2 T^{\prime}}{\delta}}$. With $\eta=\frac{1}{k G} \sqrt{\frac{2}{d L T^{\prime}}}$ and $m=k$

$$
\begin{equation*}
\text { Regret }_{i} \leq 2 k D G n \sqrt{2 d L T^{\prime}}+6 D G T^{\prime} n \sqrt{2 k \ln \frac{2 T^{\prime}}{\delta}} \tag{130}
\end{equation*}
$$

Let $T^{\prime}=T^{\frac{1}{2}}$ and $k=T^{\frac{1}{2}}$

$$
\begin{equation*}
\text { Regret }_{i} \leq D G n\left(2 \sqrt{2 d L}+6 \sqrt{2 \ln \frac{2 T^{1 / 2}}{\delta}}\right) T^{\frac{3}{4}}=\tilde{\mathcal{O}}\left(T^{\frac{3}{4}} \ln \frac{1}{\delta}\right) \tag{131}
\end{equation*}
$$

Proof of smooth and convex losses

After reduction, Algorithm 3 also guarantees Theorem 3 with $1-\delta$ probability for smooth and convex losses.

$$
\begin{align*}
\operatorname{Regret}_{i} & \leq \frac{2 D^{\prime} n}{\eta}+\eta d D^{\prime} G^{\prime 2} T^{\prime} n L+3 r^{\prime} n+2 \beta^{\prime} r^{2} T^{\prime} n \\
& =\frac{2 D^{\prime} n}{\eta}+\eta d D^{\prime} G^{\prime 2} T^{\prime} n L+6 D^{\prime} G^{\prime} n \sqrt{2 T^{\prime} \ln \frac{4}{\delta}}+\frac{16 \beta^{\prime} D^{\prime 2} T^{\prime} n}{m} \ln \frac{2 T^{\prime}}{\delta} \tag{132}\\
& =\frac{2 D n}{\eta}+\eta d D(k \cdot G)^{2} T^{\prime} n L+6 D(k \cdot G) n \sqrt{2 T^{\prime} \ln \frac{4}{\delta}}+\frac{16(k \cdot \beta) D^{2} T^{\prime} n}{m} \ln \frac{2 T^{\prime}}{\delta}
\end{align*}
$$

where $L=\frac{1}{2}+\frac{3 \sqrt{n}}{1-\sigma_{2}(P)}, r=2 D^{\prime} \sqrt{\frac{2}{m} \ln \frac{2 T^{\prime}}{\delta}}$ and $r^{\prime}=2 D^{\prime} G^{\prime} \sqrt{2 T^{\prime} \ln \frac{4}{\delta}}$. With $\eta=\frac{1}{k G} \sqrt{\frac{2}{d L T^{\prime}}}$ and $m=k$

$$
\begin{equation*}
\text { Regret }_{i} \leq 2 k D G n \sqrt{2 d L T^{\prime}}+6 D(k \cdot G) n \sqrt{2 T^{\prime} \ln \frac{4}{\delta}}+16 \beta D^{2} T^{\prime} n \ln \frac{2 T^{\prime}}{\delta} \tag{133}
\end{equation*}
$$

Let $T^{\prime}=T^{\frac{2}{3}}$ and $k=T^{\frac{1}{3}}$

$$
\begin{equation*}
\operatorname{Regret}_{i} \leq D n\left(2 G \sqrt{2 d L}+6 G \sqrt{2 \ln \frac{4}{\delta}}+16 \beta D \ln \frac{2 T^{2 / 3}}{\delta}\right) T^{\frac{2}{3}}=\tilde{\mathcal{O}}\left(T^{\frac{2}{3}} \ln \frac{1}{\delta}\right) \tag{134}
\end{equation*}
$$

