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Proof of Lemma 1

We first introduce the following two lemmas.

Lemma 5. (Lemma 6 in Hazan and Minasyan (2020)) Under Assumption 1, the linear value oracle MK(·) is convex and
D-Lipschitz, i.e.,

∀y1,y2 ∈ Rd, |MK(y1)−MK(y2)| ≤ D∥y1 − y2∥2. (38)

Lemma 6. (Lemma 11 in Hazan and Minasyan (2020)) The function h∗
η(y) = Ev∼B

[
MK(y + 1

η · v)
]

is ηdD-smooth, given

MK(·) : Rd → R is D-Lipschitz, i.e., ∀y1,y2 ∈ Rd

h∗
η(y1) ≤ h∗

η(y2) +
〈
∇h∗

η(y2),y1 − y2

〉
+

ηdD

2
∥y1 − y2∥22. (39)

Lemma 6 implies that h∗
η(·) is ηdD-smooth. Therefore, we have

∀y1,y2 ∈ Rd, ∥∇h∗
η(y1)−∇h∗

η(y2)∥2 ≤ ηdD∥y1 − y2∥2. (40)

Assumption 3 indicates that communications between local learners in D-OCO are modeled via a doubly stochastic matrix
P . Let z̄t = 1

n

∑n
j=1 zt,j be the average of the dual variables for all learners at round t. By exploiting the special properties of

P , we can upper bound the difference between z̄t and zt,i for any local learner i at round t, as shown below.

Lemma 7. (Lemma 6 in Zhang et al. (2017)) Let z̄t = 1
n

∑n
j=1 zt,j and zt,i =

∑
j∈Ni

Pijzt−1,j + u, where u is a vector and
∥u∥2 ≤ G .Under Assumption 3, for any learner i ∈ V at round t

∥zt,i − z̄t∥2 ≤
√
nG

1− σ2(P )
, (41)

where σ2(P ) is the second largest eigenvalue of the communication matrix P .

Let zt,i and xt,i be defined as that in Algorithm 1. Denote z̄t−1 = 1
n

∑n
j=1 zt−1,j and x̄t = ∇h∗

η(−z̄t−1), then we have

∥x̄t − xt,i∥2 = ∥∇h∗
η(−z̄t−1)−∇h∗

η(−zt−1,i)∥2
(40)
≤ ηdD∥zt−1,i − z̄t−1∥2

(41)
≤ ηdD

√
nG

1− σ2(P )
= ϵ,

(42)

Hence, we have proved Lemma 1.

Proof of Lemma 2

Let x̄t = ∇h∗
η(−z̄t−1), ϵ = ηdD

√
nG

1−σ2(P ) and x∗ = argminx∈K
∑n

j=1

∑T
t=1 ft,j(x). Under Assumption 2, by using the

convexity of ft,j(x) and triangle inequality, we have

ft,j(xt,i) ≤ ft,j(x̄t) + ⟨∇ft,j(xt,i),xt,i − x̄t⟩
≤ ft,j(x̄t) +G∥xt,i − x̄t∥2

(43)

ft,j(x̄t) ≤ ft,j(xt,j) + ⟨∇ft,j(x̄t),xt,j − x̄t⟩
≤ ft,j(xt,j) +G∥xt,j − x̄t∥2

(44)

Then,using Lemma 1, (43) and (44), we have



T∑
t=1

[ft,j(xt,i)− ft,j(x
∗)]

(43)
≤

T∑
t=1

[ft,j(x̄t) +G∥xt,i − x̄t∥2 − ft,j(x
∗)]

(42),(44)
≤

T∑
t=1

[ft,j(xt,j) +G∥xt,j − x̄t∥2 − ft,j(x
∗)] + ϵGT

(42)
≤

T∑
t=1

[ft,j(xt,j)− ft,j(x
∗)] + 2ϵGT

≤
T∑

t=1

⟨∇t,j ,xt,j − x∗⟩+ 2ϵGT

=

T∑
t=1

[⟨∇t,j ,xt,j − x̄t⟩+ ⟨∇t,j , x̄t − x∗⟩] + 2ϵGT

≤
T∑

t=1

[G∥xt,j − x̄t∥2 + ⟨∇t,j , x̄t − x∗⟩] + 2ϵGT

(42)
≤

T∑
t=1

⟨∇t,j , x̄t − x∗⟩+ 3ϵGT.

(45)

Summing up both side of (45) from j = 1 to n, we have

Regreti =

n∑
j=1

T∑
t=1

[ft,j(xt,i)− ft,j(x
∗)] ≤

n∑
j=1

T∑
t=1

⟨∇t,j , x̄t − x∗⟩+ 3ϵGTn ≤ n

T∑
t=1

〈
∇̄t, x̄t − x∗〉+ 3ϵGTn, (46)

in which ∇̄t =
1
n

∑n
j=1 ∇t,j .

Proof of Lemma 3
Lemma 8. For any v ∼ B, hη(x) is upper bounded by D

η under Assumption 1, i.e.,

∀x ∈ K, hη(x) ≤ D/η. (47)

By applying weak duality and Lemma 8, we have

D(λ̄∗
1, · · · , λ̄∗

T ) ≤ min
x∈K

{hη(x) +

T∑
t=1

Ft(x)} ≤ max
x∈K

hη(x) + min
x∈K

T∑
t=1

Ft(x) ≤
D

η
+min

x∈K

T∑
t=1

Ft(x). (48)

Proof of Lemma 8
(The following proof can also be found in Hazan and Minasyan (2020). Here, we present it in detail).

First, we recall that h∗
η(y) = Ev∼B

[
MK(y + 1

η · v)
]
. Then, under Assumption 1, we have ∀x ∈ K,y ∈ Rd,

⟨x,y⟩ − h∗
η(y) = ⟨x,y⟩ − Ev∼B

[
MK(y +

1

η
· v)
]
= Ev∼B

[
⟨x,y⟩ −max

x′∈K

〈
y +

1

η
· v,x′

〉]
≤ Ev∼B

[
⟨x,y⟩ −

〈
y +

1

η
· v,x

〉]
= Ev∼B

[〈
−1

η
· v,x

〉]
≤ Ev∼B

[
∥v∥2∥x∥2

η

]
≤ Ev∼B

[
D

η

]
=

D

η
.

(49)

So we have
hη(x) = ⟨x,y⟩ − h∗

η(y) ≤ D/η. (50)



Proof of Lemma 4
We first introduce the following two lemmas.
Lemma 9. For any v ∼ B, h∗

η(0) is upper bounded by D
η under Assumption 1, i.e.,

h∗
η(0) ≤ D/η. (51)

Lemma 10. Let ∇̄t =
1
n

∑n
j=1 ∇t,j and z̄t =

1
n

∑n
j=1 zt,j . Under Assumption 3 we have

z̄t = z̄t−1 + ∇̄t, (52)
Moreover, if z0,i = 0, there is z̄0 = 1

n

∑n
j=1 z0,j = 0 and we have ∇̄1:t = z̄t.

Then, we denote ∆̄t as the difference value of D(λ̄1, · · · , λ̄T ) with two consecutive rounds:
∆̄t = D(λ̄t

1, · · · , λ̄t
T )−D(λ̄t−1

1 , · · · , λ̄t−1
T )

= D(∇̄1, · · · , ∇̄t, 0, · · · , 0)−D(∇̄1, · · · , ∇̄t−1, 0, · · · , 0)
= −

[
h∗
η

(
−∇̄1:t

)
− h∗

η

(
−∇̄1:t−1

)]
− F ∗

t (∇̄t) + F ∗
t (0).

(53)

According to the definition of ∆̄t, we have

∆̄t
(53)
= −

[
h∗
η

(
−∇̄1:t

)
− h∗

η

(
−∇̄1:t−1

)]
− F ∗

t (∇̄t) + F ∗
t (0)

(39)
≥
〈
∇̄t,∇h∗

η

(
−∇̄1:t−1

)〉
− ηdD

2
∥∇̄t∥22 − F ∗

t (∇̄t) + F ∗
t (0)

=
〈
∇̄t, x̄t

〉
− F ∗

t (∇̄t)−
ηdD

2
∥∇̄t∥22 + F ∗

t (0)

≥ Ft(x̄t)−
ηdD

2
G2 + F ∗

t (0).

(54)

The first inequality is because h∗
η(y) is ηdD-smooth (Lemma 6). The second inequality is due to Assumption 2 and the Fenchel

dual identity F ∗
t (∇̄t) =

〈
∇̄t,x

〉
− Ft(x) = 0 for the linear function Ft(x) =

〈
∇̄t,x

〉
. The last equality is because x̄t =

∇h∗
η (−z̄t−1) = ∇h∗

η

(
−∇̄1:t−1

)
according to Lemma 10. The inequality (54) can be simplified as follows:

∆̄t = D(∇̄1, · · · , ∇̄t, 0, · · · , 0)−D(∇̄1, · · · , ∇̄t−1, 0, · · · , 0) ≥ Ft(x̄t)−
ηdD

2
G2 + F ∗

t (0). (55)

By summing up (55) for all t = 1, · · · , T , we have
T∑

t=1

∆̄t = D(∇̄1, · · · , ∇̄T )−D(0, · · · , 0)

= D(∇̄1, · · · , ∇̄T )−

(
−h∗

η (0)−
T∑

t=1

F ∗
t (0)

)

≥
T∑

t=1

Ft(x̄t)−
ηdD

2
G2T +

T∑
t=1

F ∗
t (0),

(56)

which further implies that

D(∇̄1, · · · , ∇̄T ) ≥
T∑

t=1

Ft(x̄t)−
ηdD

2
G2T − h∗

η (0)

≥
T∑

t=1

Ft(x̄t)−
ηdD

2
G2T − D

η
,

(57)

where the last inequality is due to Lemma 9.

Proof of Lemma 9
(The following proof can also be found in Hazan and Minasyan (2020). Here, we present it in detail).
Since MK(0) = 0, by Lipschitzness of MK(·) (Lemma 5), we have∣∣∣∣MK

(
1

η
· v
)∣∣∣∣ ≤ D

∥v∥2
η

≤ D

η
, (58)

where v is sampled from an unit ball B. So we have

h∗
η(0) = Ev∼B

[
MK

(
1

η
· v
)]

≤ D

η
. (59)



Proof of Lemma 10

Let ∇̄t =
1
n

∑n
i=1 ∇t,i and z̄t =

1
n

∑n
i=1 zt,i where zt,i =

∑
j∈Ni

Pijzt−1,j +∇t,i. Then, we have

z̄t =
1

n

n∑
i=1

zt,i =
1

n

n∑
i=1

∑
j∈Ni

Pijzt−1,j +∇t,i

 =
1

n

n∑
j=1

n∑
i=1

Pijzt−1,j +
1

n

n∑
i=1

∇t,i = z̄t−1 + ∇̄t, (60)

where the last equality is because Assumption 3 holds that
∑n

j=1 Pij =
∑

j∈Ni
Pij and

∑n
i=1 Pij = 1. If z0,i = 0, there is

z̄0 = 1
n

∑n
j=1 z0,j = 0 and we have

∇̄1:t =

t∑
r=1

∇̄r =

t∑
r=1

(z̄r − z̄r−1) = z̄t. (61)

Proof of Theorem 2

Proof of general convex losses
In Algorithm 2, all the random vectors are independent and identically distributed (i.i.d.), and sampled from an unit ball B
uniformly. At round t, we denote ξt,i =

{
v1
t,i, · · · ,vm

t,i

}
as the randomness of learner i. And the sample randomness is denoted

as ξt = {ξt,1, · · · , ξt,n} at round t. For brevity, we denote the random variables until round t as ξ[t] = {ξ1, · · · , ξt} and
correspondingly, for local learner i the random variables are denoted as ξ[t],i = {ξ1,i, · · · , ξt,i}.

We first introduce following three lemmas.

Lemma 11. (Lemma 15 in (Hazan and Minasyan 2020)) Let Z1, · · · , Zm ∼ Z be i.i.d. samples of a bounded random vector

Z ∈ Rd, ∥Z∥2 ≤ D, with mean Z̄ = E[Z]. Denote Z̄m = 1
m

∑m
u=1 Zu, then EZ

[
∥Z̄m − Z̄∥2

]
≤
√
EZ
[
∥Z̄m − Z̄∥22

]
≤ 2D√

m
.

Lemma 12. Define x̌t,i = ∇h∗
η (−z̃t−1,i), x̂t = ∇h∗

η (−z̃t−1) where z̃t−1 = 1
n

∑n
j=1 z̃t−1,j and ∇̃t,i, z̃t−1,i are both defined

in Algorithm 2 . Then we have

∥x̌t,i − x̂t∥2 ≤ ϵ, (62)

where ϵ = ηdD
√
nG

1−σ2(P ) .

Lemma 13. Let z̃t,j , x̃t,i and ∇̃t,i be defined as that in Algorithm 2. Define x̂t = ∇h∗
η (−z̃t−1) where z̃t−1 = 1

n

∑n
j=1 z̃t−1,j ,

then we have

Eξ[T ]
[∥x̂t − x̃t,i∥2] ≤ ϵ+

2D√
m
, (63)

where ϵ = ηdD
√
nG

1−σ2(P ) .

Remark 7. The expected action x̂t can be viewed as that played by a virtual centralized learner. Lemma 13 indicates that the
distance between the expected action x̂t of the virtual learner and the sampling action x̃t,i of learner i is upper bounded. In the
following, by Lemma 13, we can convert the global regret analyze to this virtual one.

Define x∗ = argminx∈K
∑n

j=1

∑T
t=1 ft,j(x) and x̂t = ∇h∗

η (−z̃t−1) where z̃t−1 = 1
n

∑n
j=1 z̃t−1,j . By exploiting the

convexity of ft,j(x) and triangle inequality, we have

ft,j(x̃t,i) ≤ ft,j(x̂t) + ⟨∇ft,j(x̃t,i), x̃t,i − x̂t⟩
≤ ft,j(x̂t) +G∥x̃t,i − x̂t∥2

(64)

ft,j(x̂t) ≤ ft,j(x̃t,j) + ⟨∇ft,j(x̂t), x̃t,j − x̂t⟩
≤ ft,j(x̃t,j) +G∥x̃t,j − x̂t∥2

(65)



By exploiting Lemma 13, (64) and (65), we have
T∑

t=1

Eξ[T ]
[ft,j(x̃t,i)− ft,j(x

∗)]
(64)
≤

T∑
t=1

Eξ[T ]
[ft,j(x̂t) +G∥x̂t − x̃t,i∥2 − ft,j(x

∗)]

(63),(65)
≤

T∑
t=1

Eξ[T ]
[ft,j(x̃t,j) +G∥x̂t − x̃t,j∥2 − ft,j(x

∗)] +

(
ϵ+

2D√
m

)
GT

(63)
≤

T∑
t=1

Eξ[T ]
[ft,j(x̃t,j)− ft,j(x

∗)] + 2

(
ϵ+

2D√
m

)
GT

≤
T∑

t=1

Eξ[T ]

〈
∇̃t,j , x̃t,j − x∗

〉
+ 2

(
ϵ+

2D√
m

)
GT

=

T∑
t=1

Eξ[T ]

[〈
∇̃t,j , x̃t,j − x̂t

〉
+
〈
∇̃t,j , x̂t − x∗

〉]
+ 2

(
ϵ+

2D√
m

)
GT

≤
T∑

t=1

Eξ[T ]

[
G∥x̃t,j − x̂t∥2 +

〈
∇̃t,j , x̂t − x∗

〉]
+ 2

(
ϵ+

2D√
m

)
GT

(63)
≤

T∑
t=1

Eξ[T ]

〈
∇̃t,j , x̂t − x∗

〉
+ 3

(
ϵ+

2D√
m

)
GT.

(66)

Summing up both side from j = 1 to n, we have

E [Regreti] =

n∑
j=1

T∑
t=1

Eξ[T ]
[ft,j(x̃t,i)− ft,j(x

∗)]

≤
n∑

j=1

T∑
t=1

Eξ[T ]

〈
∇̃t,j , x̂t − x∗

〉
+ 3

(
ϵ+

2D√
m

)
GTn

≤ n

T∑
t=1

Eξ[T ]

〈
∇̃t, x̂t − x∗

〉
+ 3

(
ϵ+

2D√
m

)
GTn,

(67)

in which ∇̃t =
1
n

∑n
j=1 ∇̃t,j . ∇̃t,j and x̃t,j are defined in Algorithm 2.

Following the same proof framework of Theorem 1, we consider F̃t =
〈
∇̃t,x

〉
, where ∇̃t is denoted as ∇̃t =

1
n

∑n
j=1 ∇̃t,j .

And we can derive the following lemma.

Lemma 14. Define x∗ = argminx∈K
∑T

t=1

∑n
j=1 ft,j(x), ∇̃t = 1

n

∑n
j=1 ∇̃t,j , F̃t(x) =

〈
∇̃t,x

〉
and x̂t = ∇h∗

η (−z̃t−1)

where z̃t−1 = 1
n

∑n
j=1 z̃t−1,j , then we have

T∑
t=1

F̃t(x̂t)−
T∑

t=1

F̃t(x
∗) ≤ ηdD

2
G2T +

2D

η
. (68)

By using Lemma 14, we can obtain that

E [Regreti] ≤ nE

[
T∑

t=1

〈
∇̃t, x̂t − x∗

〉]
+ 3

(
ϵ+

2D√
m

)
GTn

= nE

[
T∑

t=1

(
F̃t(x̂t)− F̃t(x

∗)
)]

+ 3

(
ϵ+

2D√
m

)
GTn

≤ n

{
ηdD

2
G2T +

2D

η

}
+ 3

(
ϵ+

2D√
m

)
GTn

=
2Dn

η
+

ηdD

2
G2Tn+ 3ϵGTn+

6DGTn√
m

=
2Dn

η
+ ηdDG2Tn

(
1

2
+

3
√
n

1− σ2(P )

)
+

6DGTn√
m

.

(69)



Proof of smooth and convex losses
Lemma 15. (Lemma 14 in Hazan and Minasyan (2020)) If the function f : K −→ R is β-smooth, then we have

⟨∇f(y)−∇f(x),y − x⟩ ≤ ∥∇f(y)−∇f(x)∥2 · ∥y − x∥2 ≤ β∥y − x∥22, (70)

which equals to
⟨∇f(y),y − x⟩ ≤ ⟨∇f(x),y − x⟩+ β∥y − x∥22. (71)

Lemma 16. Let x̃t,i be defined as that in Algorithm 2 and define x̂t = ∇h∗
η (−z̃t−1) where z̃t−1 = 1

n

∑n
j=1 z̃t−1,j , then we

have

Eξ[T ]
[⟨∇ft,j(x̃t,i), x̃t,i − x̂t⟩] ≤ ϵG+

4βD2

m
, (72)

Eξ[T ]
[⟨∇ft,j(x̃t,j), x̃t,j − x̂t⟩] ≤ ϵG+

4βD2

m
, (73)

Eξ[T ]
[⟨∇ft,j(x̂t), x̂t − x̃t,j⟩] ≤ ϵG, (74)

where ϵ = ηdD
√
nG

1−σ2(P ) .

Using the convexity of local loss functions ft,j , triangle inequality and Lemma 16, we have

T∑
t=1

Eξ[T ]
[ft,j(x̃t,i)− ft,j(x

∗)] ≤
T∑

t=1

Eξ[T ]
[ft,j(x̂t) + ⟨∇ft,j(x̃t,i), x̃t,i − x̂t⟩ − ft,j(x

∗)]

(72)
≤

T∑
t=1

Eξ[T ]
[ft,j(x̃t,j) + ⟨∇ft,j(x̂t), x̂t − x̃t,j⟩ − ft,j(x

∗)] + ϵGT +
4βD2T

m

(74)
≤

T∑
t=1

Eξ[T ]
[ft,j(x̃t,j)− ft,j(x

∗)] + 2ϵGT +
4βD2T

m

≤
T∑

t=1

Eξ[T ]
⟨∇ft,j(x̃t,j), x̃t,j − x∗⟩+ 2ϵGT +

4βD2T

m

=

T∑
t=1

Eξ[T ]
[⟨∇ft,j(x̃t,j), x̃t,j − x̂t⟩+ ⟨∇ft,j(x̃t,j), x̂t − x∗⟩] + 2ϵGT +

4βD2T

m

(73)
≤ Eξ[T ]

T∑
t=1

〈
∇̃t,j , x̂t − x∗

〉
+ 3ϵGT +

8βD2T

m
,

(75)

where ∇̃t,j = ∇ft,j(x̃t,j).
Summing up both side from j = 1 to n, we have

E [Regreti] =

n∑
j=1

T∑
t=1

Eξ[T ]
[ft,j(x̃t,i)− ft,j(x

∗)]

≤
n∑

j=1

T∑
t=1

Eξ[T ]

〈
∇̃t,j , x̂t − x∗

〉
+ 3ϵGTn+

8βD2Tn

m

≤ n

T∑
t=1

Eξ[T ]

〈
∇̃t, x̂t − x∗

〉
+ 3ϵGTn+

8βD2Tn

m
,

(76)

in which ∇̃t =
1
n

∑n
j=1 ∇̃t,j and ϵ = ηdD

√
nG

1−σ2(P ) .



Therefore, we can upper bound the the expected regret as following

E [Regreti] ≤ nE

[
T∑

t=1

〈
∇̃t, x̂t − x∗

〉]
+ 3ϵGTn+

8βD2Tn

m

≤ n

{
ηdD

2
G2T +

2D

η

}
+ 3ϵGTn+

8βD2Tn

m

=
2Dn

η
+

ηdD

2
G2Tn+ 3ϵGTn+

8βD2Tn

m

=
2Dn

η
+ ηdDG2Tn

(
1

2
+

3
√
n

1− σ2(P )

)
+

8βD2Tn

m
,

(77)

where the second inequality is due to Lemma 14.

Proof of Lemma 12
Let x̌t,i = ∇h∗

η (−z̃t−1,i) and x̂t = ∇h∗
η (−z̃t−1), where z̃t−1 = 1

n

∑n
i=1 z̃t−1,i and z̃t−1,i is defined in Algorithm 2. Then

we have

∥x̌t,i − x̂t∥2 =
∥∥∇h∗

η (−z̃t−1,i)−∇h∗
η (−z̃t−1)

∥∥
2

(40)
≤ ηdD ∥z̃t−1 − z̃t−1,i∥2

(41)
≤ ηdD

√
nG

1− η2(P )
,

(78)

where the first inequality is due to the smoothness of h∗
η(y) and the second inequality is due to Lemma 7.

Proof of Lemma 13
To prove Lemma 13, we define the following auxiliary variable,

x̌t,i = ∇h∗
η (−z̃t−1,i) = Evt∼B

[
OK

(
−z̃t−1,i +

vt

η

)]
. (79)

Using triangle inequality, it is easy to obtain that

∥x̂t − x̃t,i∥2 ≤ ∥x̂t − x̌t,i∥2 + ∥x̌t,i − x̃t,i∥2. (80)

By using Lemma 12, we have

∥x̂t − x̌t,i∥2
(78)
≤ ηdD

√
nG

1− σ2(P )
. (81)

We know x̃t,i is the unbiased estimation of x̌t,i. Following Hazan and Minasyan (2020), we take expectation over all ran-
domness ξ[T ],i with the reverse order ξT,i, · · · , ξ1,i. It is worth of attention that x̌t,i is deterministic on ξt,i given ξ[t−1],i. Hence,
we have

Eξ[T ],i

[
∥x̌t,i − x̃t,i∥2

]
= Eξ[t],i

[
∥x̌t,i − x̃t,i∥2

]
= Eξ[t−1],i

[
Eξt,i

[
∥x̌t,i − x̃t,i∥2 |ξ[t−1],i

]]
≤ 2D√

m
. (82)

The inequality is due to Lemma 11. Because of {ξt,1, · · · , ξt,n} i.i.d., we have

Eξ[T ]

[
∥x̌t,i − x̃t,i∥2

]
≤ 2D√

m
. (83)

Therefore, by summing up above inequalities, we have

Eξ[T ]
[∥x̂t − x̌t,i∥2] ≤ Eξ[T ]

[∥x̂t − x̌t,i∥2 + ∥x̌t,i − x̃t,i∥2]

≤ ηdD

√
nG

1− σ2(P )
+

2D√
m

= ϵ+
2D√
m
,

(84)

where ϵ = ηdD
√
nG

1−σ2(P ) .



Proof of Lemma 14
Following the same derivation, we define λ̃t

r(r = 1, · · · , T ) as

λ̃t
r =

{
∇̃r, if r ≤ t;

0, if r > t.
(85)

and consider the difference between D(λ̃t
1, · · · , λ̃t

T ) and D(λ̃t−1
1 , · · · , λ̃t−1

T )

∆̃t = D(λ̃t
1, · · · , λ̃t

T )−D(λ̃t−1
1 , · · · , λ̃t−1

T )

= D(∇̃1, · · · , ∇̃t−1, ∇̃t, · · · , 0)−D(∇̃1, · · · , ∇̃t−1, 0, · · · , 0)
(39)
≥
〈
∇̃t,∇h∗

η

(
−∇̃1:t−1

)〉
− F̃ ∗

t (∇̃t)−
ηdD

2
G2 + F̃ ∗

t (0)

=
〈
∇̃t, x̂t

〉
− F̃ ∗

t (∇̃t)−
ηdD

2
G2 + F̃ ∗

t (0)

= F̃t(x̂t)−
ηdD

2
G2 + F̃ ∗

t (0),

(86)

where the first inequality is due to the smoothness of h∗
η(y), the third equality is due to x̂t = ∇h∗

η (−z̃t−1) = ∇h∗
η

(
−∇̃1:t−1

)
(Lemma 10) and the last equality is due to F̃ ∗

t (∇̃t) =
〈
∇̃t, x̂t

〉
− F̃t(x̂t) = 0 for the linear function F̃t(x) =

〈
∇̃t,x

〉
. Then,

following the similar derivation of Theorem 1, it is easy to obtain that

T∑
t=1

〈
∇̃t, x̂t − x∗

〉
=

T∑
t=1

F̃t(x̂t)−
T∑

t=1

F̃t(x
∗) ≤

T∑
t=1

F̃t(x̂t)−min
x∈K

T∑
t=1

F̃t(x) ≤
ηdD

2
G2T +

2D

η
. (87)

Proof of Lemma 16
To prove Lemma 16, we define the following auxiliary variable,

x̌t,i = ∇h∗
η (−z̃t−1,i) . (88)

proof of (72)
Using triangle inequality and Lemma 12, we have

⟨∇ft,j(x̃t,i), x̃t,i − x̂t⟩ = ⟨∇ft,j(x̃t,i), x̃t,i − x̌t,i⟩+ ⟨∇ft,j(x̃t,i), x̌t,i − x̂t⟩
≤ ⟨∇ft,j(x̃t,i), x̃t,i − x̌t,i⟩+G∥x̌t,i − x̂t∥2
(78)
≤ ⟨∇ft,j(x̃t,i), x̃t,i − x̌t,i⟩+ ϵG,

(89)

where ϵ = ηdD
√
nG

1−σ2(P ) .
Now, proceed to bound the first term. By using Lemma 15, the first term can be rewritten as

⟨∇ft,j(x̃t,i), x̃t,i − x̌t,i⟩ ≤ ⟨∇ft,j(x̌t,i), x̃t,i − x̌t,i⟩+ β∥x̃t,i − x̌t,i∥22. (90)

Moreover, x̃t,i is is the unbiased estimation of x̌t,i and ∇ft,j(x̌t,i) is independent of x̃t,i − x̌t,i with respect to ξt,i condition
on ξ[t−1],i. Following Hazan and Minasyan (2020), we take expectation over all randomness ξ[T ],i with the reverse order
ξT,i, · · · , ξ1,i

Eξ[T ],i
[⟨∇ft,j(x̌t,i), x̃t,i − x̌t,i⟩] = Eξ[t],i [⟨∇ft,j(x̌t,i), x̃t,i − x̌t,i⟩]

= Eξ[t−1],i

[
Eξt,i

[
⟨∇ft,j(x̌t,i), x̃t,i − x̌t,i⟩ |ξ[t−1],i

]]
= 0.

(91)

So combining with Lemma 11 and Lemma 15, we have

Eξ[T ],i
[⟨∇ft,j(x̃t,i), x̃t,i − x̌t,i⟩] = Eξ[t],i [⟨∇ft,j(x̃t,i), x̃t,i − x̌t,i⟩]

≤ Eξ[t],i

[
⟨∇ft,j(x̌t,i), x̃t,i − x̌t,i⟩+ β∥x̃t,i − x̌t,i∥22

]
≤ 4βD2

m
.

(92)

Because of {ξt,1, · · · , ξt,n} i.i.d., we have

Eξ[T ]
[⟨∇ft,j(x̃t,i), x̃t,i − x̌t,i⟩] ≤

4βD2

m
. (93)



After bounding the first term of (89), we have

Eξ[T ]
[⟨∇ft,j(x̃t,i), x̃t,i − x̂t⟩] ≤

4βD2

m
+ ϵG. (94)

proof of (73)

⟨∇ft,j(x̃t,j), x̃t,j − x̂t⟩ = ⟨∇ft,j(x̃t,j), x̃t,j − x̌t,j⟩+ ⟨∇ft,j(x̃t,j), x̌t,j − x̂t⟩
≤ ⟨∇ft,j(x̃t,j), x̃t,j − x̌t,j⟩+G∥x̌t,j − x̂t∥2
(78)
≤ ⟨∇ft,j(x̃t,j), x̃t,j − x̌t,j⟩+ ϵG.

(95)

The last inequality is because of Lemma 12. Also, by using Lemma 15, we have

⟨∇ft,j(x̃t,j), x̃t,j − x̌t,j⟩ ≤ ⟨∇ft,j(x̌t,j), x̃t,j − x̌t,j⟩+ β∥x̃t,j − x̌t,j∥22. (96)

For the same reason that x̃t,j is is the unbiased estimation of x̌t,j and ∇ft,j(x̌t,j) is independent of x̃t,j − x̌t,j with respect to
ξt,j condition on ξ[t−1],j . So combining with Lemma 11 and Lemma 15, we take expectation over ξ[T ],j with the reverse order
ξT,j , · · · , ξ1,j :

Eξ[T ],j
[⟨∇ft,j(x̃t,j), x̃t,j − x̌t,j⟩] = Eξ[t],j [⟨∇ft,j(x̃t,j), x̃t,j − x̌t,j⟩]

≤ Eξ[t],j

[
⟨∇ft,j(x̌t,j), x̃t,j − x̌t,j⟩+ β∥x̃t,j − x̌t,j∥22

]
≤ 4βD2

m
.

(97)

Because of {ξt,1, · · · , ξt,n} i.i.d., we have

Eξ[T ]
[⟨∇ft,j(x̃t,j), x̃t,j − x̌t,j⟩] ≤

4βD2

m
. (98)

So Eξ[T ]
[⟨∇ft,j(x̃t,j), x̃t,j − x̂t⟩] is upper bounded by

Eξ[T ]
[⟨∇ft,j(x̃t,j), x̃t,j − x̂t⟩] ≤

4βD2

m
+ ϵG. (99)

proof of (74)

⟨∇ft,j(x̂t), x̂t − x̃t,j⟩ = ⟨∇ft,j(x̂t), x̂t − x̌t,j⟩+ ⟨∇ft,j(x̂t), x̌t,j − x̃t,j⟩
≤ G∥x̂t − x̌t,j∥2 + ⟨∇ft,j(x̂t), x̌t,j − x̃t,j⟩
(78)
≤ ϵG+ ⟨∇ft,j(x̂t), x̌t,j − x̃t,j⟩ ,

(100)

where ϵ = ηdD
√
nG

1−σ2(P ) .
Also, x̃t,j is is the unbiased estimation of x̌t,j and ∇ft,j(x̂t) is independent on x̌t,j− x̃t,j with respect to ξt,j when condition

on ξ[t−1],j . So we take expectation over ξ[T ],j with the reverse order ξT,j , · · · , ξ1,j :

Eξ[T ],j
[⟨∇ft,j(x̂t), x̌t,j − x̃t,j⟩] = Eξ[t],j [⟨∇ft,j(x̂t), x̌t,j − x̃t,j⟩]

= Eξ[t−1],j

[
Eξt,j

[
⟨∇ft,j(x̂t), x̌t,j − x̃t,j⟩ |ξ[t−1],j

]]
= 0.

(101)

Because of {ξt,1, · · · , ξt,n} i.i.d., we have

Eξ[T ]
[⟨∇ft,j(x̂t), x̌t,j − x̃t,j⟩] = 0. (102)

Therefore, the upper bound of Eξ[T ]
[⟨∇ft,j(x̂t), x̂t − x̃t,j⟩] is

Eξ[T ]
[⟨∇ft,j(x̂t), x̂t − x̃t,j⟩] ≤ ϵG. (103)

Proof of Theorem 3
Proof of general convex losses
Lemma 17. (Proposition 17 in (Hazan and Minasyan 2020)) Suppose {s1, · · · , sm} is martingale-difference sequence defined
on {F1, · · · ,Fm}. So {s1, · · · , sm} holds that ∀u ∈ [1,m], E[su|Fu−1] = 0 and ∃cu > 0, ∥su∥2 ≤ cu. Then for all r ≥ 0

Pr

(∥∥∥∥∥
m∑

u=1

su

∥∥∥∥∥
2

≥ r

)
≤ 2 exp

{
− r2

2
∑m

u=1 c
2
u

}
. (104)



We first define the following auxiliary variable,

x̌t,i = ∇h∗
η (−z̃t−1,i) . (105)

Then, x̃t,i =
1
m

∑m
u=1 x̃

u
t,i is is the unbiased estimation of x̌t,i Denote su = 1

m

(
x̃u
t,i − x̌t,i

)
for learner i at round t, which is

the martingale-difference sequence on {F1, · · · ,Fm} = {v1
t,i, · · · ,vm

t,i} = ξt,i. Then, we have
∑m

u=1 su = x̃t,i − x̌t,i as well
as Evu

t,i
[su|v1

t,i, · · · ,v
u−1
t,i ] = 0 due to the unbiased estimation and i.i.d. samples from an unit ball B. According to Assumption

1, there is ∥su∥2 = ∥ 1
m

(
x̃u
t,i − x̌t,i

)
∥2 =

∥x̃u
t,i−x̌t,i∥2

m ≤ 2D
m = ct. By Lemma 17, we can obtain that

Prξt,i

(∥∥∥∥∥ 1

m

m∑
u=1

(
x̃u
t,i − x̌t,i

)∥∥∥∥∥
2

≥ r

)
≤ 2 exp

{
− r2

8D2

m

}
. (106)

For some δ > 0, let r = 2D
√

2
m ln 2T

δ and there is

Prξt,i

(∥∥∥∥∥ 1

m

m∑
u=1

(
x̃u
t,i − x̌t,i

)∥∥∥∥∥
2

≥ r

)
≤ δ

T
. (107)

Because of x̃t,i =
1
m

∑m
u=1 x̃

u
t,i and {ξt,1, · · · , ξt,n} i.i.d., for the whole interval [1, T ] the union bound is

Prξ[T ]

(
∀t ∈ [1, T ], ∥x̃t,i − x̌t,i∥2 ≥ r

)
≤ δ, (108)

which also means
Prξ[T ]

(
∀t ∈ [1, T ], ∥x̃t,i − x̌t,i∥2 ≤ r

)
≥ 1− δ. (109)

Therefore, with at least 1− δ probability, ∥x̂t − x̃t,i∥2 is bounded as following

∥x̂t − x̃t,i∥2 ≤ ∥x̂t − x̌t,i∥2 + ∥x̌t,i − x̃t,i∥2
(78),(109)

≤ ϵ+ r, (110)

where r = 2D
√

2
m ln 2T

δ and ϵ = ηdD
√
nG

1−σ2(P ) .
Following the same proof framework of Theorem 2, we have

Regreti ≤ n

{
T∑

t=1

〈
∇̃t, x̂t − x∗

〉}
+ 3(ϵ+ r)GTn. (111)

Using Lemma 14, with at least 1− δ probability, Algorithm 2 guarantees

Regreti ≤ n

{
T∑

t=1

〈
∇̃t, x̂t − x∗

〉}
+ 3(ϵ+ r)GTn

≤ n

{
ηdD

2
G2T +

2D

η

}
+ 3(ϵ+ r)GTn

=
2Dn

η
+

ηdD

2
G2Tn+ 3(ϵ+ r)GTn

=
2Dn

η
+ ηdDG2Tn

(
1

2
+

3
√
n

1− σ2(P )

)
+ 3rGTn

(112)

where r = 2D
√

2
m ln 2T

δ .

Proof of smooth and convex losses
Denote gt satisfies ∥gt∥2 ≤ G and E[⟨gt, x̃t,j − x̌t,j⟩ |ξ1,j , · · · , ξt−1,j ] = 0. Let st = ⟨gt, x̃t,j − x̌t,j⟩ for learner j at round
t, which is the martingale-difference sequence on {F1, · · · ,FT } = {ξ1,j , · · · , ξT,j}. Because E[st|ξ1,j , · · · , ξt−1,j ] = 0 and
∥st∥2 = ∥ ⟨gt, x̃t,j − x̌t,j⟩ ∥2 ≤ G∥x̃t,j − x̂t,j∥2 ≤ 2GD = ct. By Lemma 17, it can be obtained that

Prξ[T ],j

(∣∣∣∣∣
T∑

t=1

⟨gt, x̃t,j − x̌t,j⟩

∣∣∣∣∣ ≥ r′

)
≤ 2 exp

{
− r′2

8G2D2T

}
= δ′ (113)



As it is mentioned in the previous section, for some δ > 0, there is ∥x̃t,j − x̌t,j∥2 ≤ r, in which r = 2D
√

2
m ln 2T

δ . Now,

let δ′ = δ
2 and r′ = 2DG

√
2T ln 2

δ′ = 2DG
√
2T ln 4

δ . Then, there is

Prξ[T ],j

(∣∣∣∣∣
T∑

t=1

⟨gt, x̃t,j − x̌t,j⟩

∣∣∣∣∣ ≥ r′

)
≤ δ′. (114)

Because of {ξt,1, · · · , ξt,n} i.i.d., for the whole interval [1, T ] the union bound is

Prξ[T ]

(∣∣∣∣∣
T∑

t=1

⟨gt, x̃t,j − x̌t,j⟩

∣∣∣∣∣ ≥ r′

)
≤ δ′, (115)

which also means

Prξ[T ]

( ∣∣∣∣∣
T∑

t=1

⟨gt, x̃t,j − x̌t,j⟩

∣∣∣∣∣ ≤ r′

)
≥ 1− δ′. (116)

Following the same proof framework of Lemma 16, we can derive
T∑

t=1

⟨∇ft,j(x̃t,i), x̃t,i − x̂t⟩ =
T∑

t=1

⟨∇ft,j(x̃t,i), x̃t,i − x̌t,i⟩+
T∑

t=1

⟨∇ft,j(x̃t,i), x̌t,i − x̂t⟩

(78)
≤

T∑
t=1

⟨∇ft,j(x̃t,i), x̃t,i − x̌t,i⟩+ ϵGT

(71)
≤

T∑
t=1

⟨∇ft,j(x̌t,i), x̃t,i − x̌t,i⟩+ β

T∑
t=1

∥x̃t,i − x̌t,i∥22 + ϵGT

(116),(109)
≤ r′ + βr2T + ϵGT,

(117)

where r = 2D
√

2
m ln 2T

δ , r′ = 2DG
√
2T ln 4

δ and ϵ = ηdD
√
nG

1−σ2(P ) . The first inequality is due to Lemma 12. The second
inequality is due to Lemma 15. The last inequality is because that ∇ft,j(x̌t,i) is independent of x̃t,i − x̌t,i condition on ξ[t−1],i

and satisfies E[⟨∇ft,j(x̌t,i), x̃t,i − x̌t,i⟩ |ξ1,i, · · · , ξt−1,i] = 0. Hence,
∑T

t=1 ⟨∇ft,j(x̌t,i), x̃t,i − x̌t,i⟩ ≤ r′ with at least 1− δ
probability. Meanwhile, we also have ∥x̃t,j − x̌t,j∥2 ≤ r.

By the same way, we can obtain that
T∑

t=1

⟨∇ft,j(x̃t,i), x̃t,i − x̂t⟩ ≤ ϵGT + βr2T + r′, (118)

T∑
t=1

⟨∇ft,j(x̃t,j), x̃t,j − x̂t⟩ ≤ ϵGT + βr2T + r′, (119)

T∑
t=1

⟨∇ft,j(x̂t), x̂t − x̃t,j⟩ ≤ ϵGT + r′. (120)

Therefore, we can also obtain

Regreti ≤ n

{
T∑

t=1

〈
∇̃t, x̂t − x∗

〉}
+ 3ϵGTn+ 3r′n+ 2βr2Tn. (121)

Using Lemma 14, with at least 1− δ probability, Algorithm 2 guarantees

Regreti ≤ n

{
T∑

t=1

〈
∇̃t, x̂t − x∗

〉}
+ 3ϵGTn+ 3r′n+ 2βr2Tn

≤ n

{
ηdD

2
G2T +

2D

η

}
+ 3ϵGTn+ 3r′n+ 2βr2Tn

=
2Dn

η
+ ηdDG2Tn

(
1

2
+

3
√
n

1− σ2(P )

)
+ 3r′n+ 2βr2Tn,

(122)

where r′ = 2DG
√
2T ln 4

δ and r = 2D
√

2
m ln 2T

δ .



Proof of Theorem 4
Algorithm 3 can be reduced to Algorithm 2 with new settings, e.g., the number of rounds T ′ = T/k and the block losses
f ′
t′,i =

∑t′·k
t=(t′−1)·k+1 ft,i in the reduced game. Here, we list some crucial changes.

• In Assumption 1, the domain set in the reduced game is upper bounded by D′ = D.

• In Assumption 2, for the block loss function f ′
t′,i =

∑t′·k
t=(t′−1)·k+1 ft,i, the Lipschitz constant in the reduced game is

G′ = k ·G.
• If ft,i is β-smooth, then the block loss function f ′

t′,i =
∑t′·k

t=(t′−1)·k+1 ft,i is (k · β)-smooth.

Proof of general convex losses
After reduction, Algorithm 3 also guarantees Theorem 2 for general convex losses.

E [Regreti] ≤
2D′n

η
+ ηdDG′2T ′nL+

6D′G′T ′n√
m

=
2Dn

η
+ ηdD(k ·G)2T ′nL+

6D(k ·G)T ′n√
m

,

(123)

where L = 1
2 + 3

√
n

1−σ2(P ) . With η = 1
kG

√
2

dLT ′ and m = k

E [Regreti] ≤ 2kDGn
√
2dLT ′ + 6D

√
kGT ′n. (124)

Let T ′ = T
1
2 and k = T

1
2

E [Regreti] ≤ nDG
(
2
√
2dL+ 6

)
T

3
4 = O

(
T

3
4

)
. (125)

Proof of smooth and convex losses
After reduction, Algorithm 3 also guarantees Theorem 2 for smooth and convex losses.

E [Regreti] ≤
2D′n

η
+ ηdDG′2T ′nL+

8β′D′2T ′n

m

=
2Dn

η
+ ηdD(k ·G)2T ′nL+

8(k · β)D2T ′n

m
,

(126)

where L = 1
2 + 3

√
n

1−σ2(P ) . With η = 1
kG

√
2

dLT ′ and m = k

E [Regreti] ≤ 2kDGn
√
2dLT ′ + 8βD2T ′n. (127)

Let T ′ = T
2
3 and k = T

1
3

E [Regreti] ≤ nD
(
2G

√
2dL+ 8βD

)
T

2
3 = O

(
T

2
3

)
. (128)

Proof of Theorem 5
Following the same proof framework as Theorem 4, we list some crucial changes after reduction.
• In Assumption 1, the domain set in the reduced game is upper bounded by D′ = D.

• In Assumption 2, for the block loss function f ′
t′,i =

∑t′·k
t=(t′−1)·k+1 ft,i, the Lipschitz constant in the reduced game is

G′ = k ·G.
• If ft,i is β-smooth, then the block loss function f ′

t′,i =
∑t′·k

t=(t′−1)·k+1 ft,i is (k · β)-smooth.

Proof of general convex losses
After reduction, Algorithm 3 also guarantees Theorem 3 with 1− δ probability for general convex losses.

Regreti ≤
2D′n

η
+ ηdD′G′2T ′nL+ 3rG′T ′n

=
2D′n

η
+ ηdD′G′2T ′nL+ 6D′G′T ′n

√
2

m
ln

2T ′

δ

=
2Dn

η
+ ηdD(k ·G)2T ′nL+ 6D(k ·G)T ′n

√
2

m
ln

2T ′

δ

(129)



where L = 1
2 + 3

√
n

1−σ2(P ) and r = 2D′
√

2
m ln 2T ′

δ . With η = 1
kG

√
2

dLT ′ and m = k

Regreti ≤ 2kDGn
√
2dLT ′ + 6DGT ′n

√
2k ln

2T ′

δ
. (130)

Let T ′ = T
1
2 and k = T

1
2

Regreti ≤ DGn

(
2
√
2dL+ 6

√
2 ln

2T 1/2

δ

)
T

3
4 = Õ

(
T

3
4 ln

1

δ

)
. (131)

Proof of smooth and convex losses
After reduction, Algorithm 3 also guarantees Theorem 3 with 1− δ probability for smooth and convex losses.

Regreti ≤
2D′n

η
+ ηdD′G′2T ′nL+ 3r′n+ 2β′r2T ′n

=
2D′n

η
+ ηdD′G′2T ′nL+ 6D′G′n

√
2T ′ ln

4

δ
+

16β′D′2T ′n

m
ln

2T ′

δ

=
2Dn

η
+ ηdD(k ·G)2T ′nL+ 6D(k ·G)n

√
2T ′ ln

4

δ
+

16(k · β)D2T ′n

m
ln

2T ′

δ

(132)

where L = 1
2 + 3

√
n

1−σ2(P ) , r = 2D′
√

2
m ln 2T ′

δ and r′ = 2D′G′
√
2T ′ ln 4

δ . With η = 1
kG

√
2

dLT ′ and m = k

Regreti ≤ 2kDGn
√
2dLT ′ + 6D(k ·G)n

√
2T ′ ln

4

δ
+ 16βD2T ′n ln

2T ′

δ
(133)

Let T ′ = T
2
3 and k = T

1
3

Regreti ≤ Dn

(
2G

√
2dL+ 6G

√
2 ln

4

δ
+ 16βD ln

2T 2/3

δ

)
T

2
3 = Õ

(
T

2
3 ln

1

δ

)
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