Supplementary Material
Proof of Lemma 1

We first introduce the following two lemmas.

Lemma 5. (Lemma 6 in Hazan and Minasyan (2020)) Under Assumption 1, the linear value oracle Myc(-) is convex and
D-Lipschitz, i.e.,

Vy1,y2 € RY [ Mic(y1) — M (y2)| < Dlly1 — y2l2- (38)

Lemma 6. (Lemma 11 in Hazan and Minasyan (2020)) The function hj;(y) =Ev-p {M;C(y + % . v)] is ndD-smooth, given
My (+) : R* — R is D-Lipschitz, i.e., Vy1,ys € R?

* * . dD
hy(y1) < hy(y2) + (Vhy(y2),y1 — y2) + UTH}H —y2li3- (39
Lemma 6 implies that h; (-) is nd D-smooth. Therefore, we have

Vy1,y2 € R [IVh (y1) — VR (y2)ll2 < ndDlly1 -yl (40)

Assumption 3 indicates that communications between local learners in D-OCO are modeled via a doubly stochastic matrix

P.letz; = % 2?21 z; ; be the average of the dual variables for all learners at round ¢. By exploiting the special properties of

P, we can upper bound the difference between z; and z; ; for any local learner ¢ at round ¢, as shown below.

Lemma 7. (Lemma 6 in Zhang et al. (2017)) Let z; = % Z;—;l Zi; and i ; = ZjGNi Pijz¢_1 ; +u, where u is a vector and
|[ull2 < G .Under Assumption 3, for any learner i € V at round t

Noe

i — Zg|le < ———, 41
i~ 7l < 10 @n
where ao(P) is the second largest eigenvalue of the communication matrix P.
Let z; ; and x; ; be defined as that in Algorithm 1. Denote z;_; = % Z?Zl z;—1j and X; = Vh;(—2;_1), then we have
[%¢ — x¢,ill2 = |Vhy(=2Zt—1) — Vhy(=2e-1,) |2

40) B

< ndD||zi—1,; — Z¢—1]|2 (42)

“h VnG

< ndD—F——+ =

< DTy = &

Hence, we have proved Lemma 1.

Proof of Lemma 2

Let X, = Vh(~2%-1), € = ndD#fp) and x* = argmin,x Z?Zl 23:1 fi,;(x). Under Assumption 2, by using the

convexity of f; ;(x) and triangle inequality, we have

Jri(xe) < foj(%e) + (Ve j(%ei), Xei — Xe)

. . 8
< fi(%e) + Gllxei — X2 (43)

fr (%) < frj(Xeg) + (Ve (Xe)s Xej — Xa)

_ 44
< fo(x15) + Glxej — Xl 9

Then,using Lemma 1, (43) and (44), we have



Z [ft.j(Xe,i) —
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T
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n T n T
Regret; =Y > [frj(xe) = i) < DD (Ve %
j=1t=1 j=1t=1
in which V; = & 37| V4

Proof of Lemma 3

T
<Y fei (ki) + Gl — Xilla = fij(x

T
fei(x")] < Z [fe.5(Xe) + Gllxes — Xell2 — fr,5(x7)]

“)] + eGT

T
< Z [fe.j(Xe,5) = fr.;(x7)] + 2¢GT

x*) + 2¢GT

T
x*) +3eGTn < nz <@t,>_ct — X*> + 3eGTn,
t=1

Lemma 8. For any v ~ B, h,(x) is upper bounded by % under Assumption 1, i.e.,

Vx € K, hy(x) < D/n.

By applying weak duality and Lemma 8, we have
DX+, A7) < min{hy( Fy(x)} < masx h (
( 1> ) T)—Lnel)rcl{ +Z t } maX

Proof of Lemma 8

T
D
i F, < — Fy(x
(9 +mip) Fib) <5 mZ !

(The following proof can also be found in Hazan and Minasyan (2020). Here, we present it in detail).
First, we recall that h (y) =Eyv~p [M;C(y + % . v)} . Then, under Assumption 1, we have Vx € K,y € R¢,

1] 1 .
(.3) = 15(3) = (%3} = Bus [ Mily 4 7 9)] =Bues [ 06) = ma (v + 7 )
S ]EVNB |:<X7 Y> - <y + l : V,X>:| = EVNIB |:<_1 : V7X>:|
n n

<Ey.p [|V||2|X||2] <Ey.p [D _D

n n n

So we have
hy(x) = (x,y) — hy(y) < D/n

(45)

(46)

(47)

(48)

(49)

(50)



Proof of Lemma 4
We first introduce the following two lemmas.
Lemma9. Forany v ~ B, h;*l(O) is upper bounded by % under Assumption 1, i.e.,

hy(0) < D/n. G
Lemma 10. LetV, = L Z] 1 Vijand zy = Z;L 1 Zt,5. Under Assumption 3 we have
zy =71 + Vi, (52)
Moreover, if 2o ; = 0, there is zZg = % 2?21 zo,; = 0 and we have Vi =z
Then, we denote A; as the difference value of D(\q, -+, Ar) with two consecutive rounds:
Ap =Dy, Np) = DT A0 )
:D(vh... V4,0, ,0) fp(?l’... ,Vie1,0,--- ,0) (53)

= (B (= Vra) = B (~Vaa1)] = F7 (V) + F7(0).
According to the definition of A;, we have

AE - [y (=Vie) = by (=Via—1)] = F (Vo) + F(0)

39)  _ dD =
> (Vi, VI (=Vie1)) = E2|V13 — Fr (V) + FF(0)
i _ap (54)
=(Vi, %) — F/ (Vi) — 7\\%\\5 + F7(0)
dD
> Fiy(x) — UTGQ + F7(0).

The first inequality is because hy, (y) is nd D-smooth (Lemma 6). The second inequality is due to Assumption 2 and the Fenchel

dual identity F(V;) = <vt, X> — Fy(x) = 0 for the linear function F}(x) = <Vt, > . The last equality is because X; =
Vh;; (—Zi—1) = Vh;; (—?LH) according to Lemma 10. The inequality (54) can be simplified as follows:

_ _ _ _ _ dD

Av=D(Vi, -, Vi,0,,0) = D(Vi,-++ , Vio1,0,--+,0) > Fy(%e) — oG + F(0), (55)

By summing up (55) forallt = 1,--- T, we have

T
S Ay =D(Vy,-+,Vr) = D0, ,0)
=1

T
=D(Vi,-,Vr) — (—h;; (0) — ZF;‘(D)) (56)
t=1
a dD
>3 Fix) - 26T + Z Fr (0
t=1 t=1
which further implies that
T
D(Vy,---,Vr) > ZFt(_t) G*T — h (0)
o (57)
_ ndD _, D
>N F N cep - 2
= tz::l #(X¢) 2 G " )
where the last inequality is due to Lemma 9.
Proof of Lemma 9
(The following proof can also be found in Hazan and Minasyan (2020). Here, we present it in detail).
Since M (0) = 0, by Lipschitzness of M(-) (Lemma 5), we have
D
‘MK< )‘ < plvlz . D (58)
Ui n

where v is sampled from an unit ball B. So we have

B (0) = By [/\/l,g (71] vﬂ < % (59)



Proof of Lemma 10

LetV,=1%" Vi;andz, =137 \ %t Where z; i = 3 Pijze1,j + V4 ;. Then, we have
:lzn:zti:lz > Pyzio1j+ Vi _lz”:z": Pijzi_1;+ — va—zt 1+ Ve, (60)
n et L\ & J n L J J

where the last equality is because Assumption 3 holds that Z?:l P = ZjeNi P;; and Z?:l Py = 1. If zg,; = 0, there is
7o = Z; 1 Zo,; = 0 and we have

(61)
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Proof of Theorem 2

Proof of general convex losses
In Algorithm 2, all the random vectors are independent and identically distributed (i.i.d.), and sampled from an unit ball B

uniformly. At round ¢, we denote & ; = { vtl’i, cee vl"z} as the randomness of learner ¢. And the sample randomness is denoted
as & = {& 1, ,&.n} at round t. For brevity, we denote the random variables until round ¢ as & = {1, ,&} and
correspondingly, for local learner i the random variables are denoted as &y ; = {14, , &}

We first introduce following three lemmas.

Lemma 11. (Lemma 15 in (Hazan and Minasyan 2020)) Let Z1,- -+ , Z,, ~ Z be i.i.d. samples of a bounded random vector

Z e < D, withmean Z = E[Z)]. Denote Z,, = =>"" | Z,, then Bz [|| Zm, — Z|2] < \/IEZ 1 Zm — Z|3] < \2/%.

Lemma 12. Define X;; = Vh;, (—Z¢—1,), Xt = Vhy (—=24—1) where ;1 = % 27:1 Z—1,; and @m, Z;_1,; are both defined
in Algorithm 2 . Then we have

1%¢,i — %¢ll, < e, (62)

where € = ndD *{;(P)

Lemma 13. Let z, j, X, ; and @m be defined as that in Algorithm 2. Define X, = Vhy, (—Zi—1) where zy_1 = % Z?zl Zi_1,j,
then we have
2D

Eg o (1% — Xe4ll2] < e+ Nk (63)

where € = ndD - 02(13)

Remark 7. The expected action X; can be viewed as that played by a virtual centralized learner. Lemma 13 indicates that the
distance between the expected action X, of the virtual learner and the sampling action X; ; of learner ¢ is upper bounded. In the
following, by Lemma 13, we can convert the global regret analyze to this virtual one.

Define x* = arg minyex Z?Zl Zle ftj(x) and %; = Vh (—2;_1) where z; | = %2;21 Zi_1,;. By exploiting the
convexity of f; ;(x) and triangle inequality, we have

Jeg(Xei) < foj(%e) + (Ve j(Xe,i), Xei — Xe)

64
< foi () + GllZes — Xelo (©4)

fri(Xe) < fij(Xe5) + (Vi (Xe), Xe 5 — %)

. . R 65
< foi(Reg) + GlRes — %ill2 (63)



By exploiting Lemma 13, (64) and (65), we have

T
Z]Eﬁ[T] [ft,j(it,i) - ft,j(
t=1

(64)

ZEf[T [fej(Xe) + GlI%xe — X ill2 — fr,5(x7)]

t=1
(63)465) T ) 9D
; i 1 (Re) + Gllke = Fuslle = fog )] + e+ —= ) GT
2D
S E[T] <vt,j>xt,j *> +2 (6 + \/7) GT (66)

E[T] [<Vt,jaxtj_xt> <Vtg,Xt—X >} "!‘2(64—\2/%) GT
Eer {G”it,j — Xell2 + <@t,j,f<t - X*>} +2 <6 + 3%) GT

=1
T
- 2D
SE:&H<Vm£tf>+3<e%)GT
t=1 ’ vm
Summing up both side from j = 1 to n, we have

E [Regret;] =ZZE5 [ft.j(Xe,i) = fr5(x7)]

S 2D
Z oy g (Re,) = fo g (x7)] +2 <e+ ﬁ) GT
T
T
T

= - N 2D
< ;;Eﬁm <Vt,jaxt —X > +3 (6 + ﬁ) GTn (67)

d - 2D
< n;Egm <Vt7xt — X*> +3 (e + \/ﬁ) GTn,
inwhich V, = 3" |V, ;. V, ; and %, ; are defined in Algorithm 2.

Following the same proof framework of Theorem 1, we consider F‘t = <§t, x>, where @t is denoted as @t = % Z?zl 615,]‘.
And we can derive the following lemma.

Lemma 14. Define x* = arg mingex 23:1 Z;;l fri(x), Vi = %Z;;l Vi Fi(x) = <@t,x> and Xy = Vhy (=2-1)

where zy_1 = L 3" | 7, 4 j, then we have

7=1
T T
~ 2D
Z Fy(xt) Z G2 —. (68)
t=1 t=1 n
By using Lemma 14, we can obtain that
¢ 2D
E[Regret;] < nE | Y (Vi % —x" )| +3 (6 + ) GTn
2 (s frafee
T ~ ~
=nE ; (Ft(fct) - Ft(x*)> +3 (e + ﬁ) GTn
69
Sn{ndDG2T+2D}+3<e+2D>GTn (69)
n vm
_ 2n 77dD =G?Tn + 3¢GTn + 6DGTn
U] vm

2Dn 1 3v/n 6DGTn
—_— DG?T .
n +ndDG n<2+102(P)>+ vm



Proof of smooth and convex losses

Lemma 15. (Lemma 14 in Hazan and Minasyan (2020)) If the function [ : KK — R is B-smooth, then we have
(Vi) = VIx),y —x) <[IVf(y) = V)2 ly = xll2 < Blly —x]3, (70)

which equals to
(VI(y),y —x) < (Vf(x).y — %) + Blly — x| (71)

Lemma 16. Let X ; be defined as that in Algorithm 2 and define %, = Vh;; (—=Z¢—1) where 2,1 = % Z?:1 Zi_1,4, then we

have
- - . 43D?
By [(V s (R0.0) %0 — %)) < G+ 0 72)
- - . 43D?
B [(V i (K1), g~ %] < G + a3)
]EE[T] [<Vft,j ()A(t)af{t - it,j>] < €G, (74)
where € = ndD% .

Using the convexity of local loss functions f; ;, triangle inequality and Lemma 16, we have

T T
> By [fegRei) = frg ()] <D Beyy (e (ke) + (Vo (Rea)s Rei — %) — foj(x7)]
t=1

N oy . _ 48D%*T
<Y Eep [frgReg) + (Vi (Re) % — % j) — foj(x7)] + €GT + Bm

T
- . 48D*T
<D B [y (Reg) = fry (7)) +26GT + =

(75)
48D?T
m

< Z Eepy (Vfrj(%ej), %ej —x*) +2¢GT +

T
. o ABDT
= Eepy (Vfri(Reg)s Rej — %) + (Vo (Rej), & — x)] + 2¢GT + Bm

T
= o 83D?T
< Eeoy Z<vt,j7Xt —x*> + 3eGT + Bm ,

~
I
=

where V, ; = Vf; j(X: ).
Summing up both side from j = 1 to n, we have

n T
E [Regret;] = Z ZEém [fr.j(Xei) = frj(x)]
J=1t=1
< Z ZEE[T] <@t,ja Xy — X*> +3eGTn +
i—1 =1
’ T
=n ZEfm <@t, Xy — X*> + 3eGTn +

t=1

88D*Tn
m

(76)

83D?Tn
m )

in which V, = 2 57|V, j and € = ndD =425



Therefore, we can upper bound the the expected regret as following

i <@t,§<t — x*>

t=1

D?*T
+ 3eGTn + M
m

E [Regret,] < nE

83D*Tn

m (77)
83D*Tn
m

< n{ndQZDGQTJr 2D} +3¢GTn +
n
2D dD
_n + UTG2TTL+3€GTTL+
n

2D 1 DT
_2Dn L apcrry (L4 VR ) | 88D7Tn
n 2 1—o09(P) m

where the second inequality is due to Lemma 14.

Proof of Lemma 12
Let X;; = Vhy (=%¢-1,:) and X, = Vh} (=Z;-1), where z; 1 = % > iy Zi—1, and Z;_ ; is defined in Algorithm 2. Then
we have

1%e,i — %¢ly = HVhf, (=Zt-1,4) — Vhy (—itq)HQ

(40) N N
< ndD ||Zg—1 — Ze—1,i|y (78)
(41)
< ndD VG ;

1 —n2(P)

where the first inequality is due to the smoothness of hj;(y) and the second inequality is due to Lemma 7.

Proof of Lemma 13

To prove Lemma 13, we define the following auxiliary variable,

g £ = . v
Xt = Vhy (=2i-1,i) = Ev,~B [OK (_Ztl,i + 7;)] . (79)
Using triangle inequality, it is easy to obtain that
%: = Xeill2 < [1%e — Xeill2 + %Ki — Xeill2- (30)
By using Lemma 12, we have
) VnG
X¢ — X¢5ll, < ndD—F——. 81
||Xt Xt, ||2 — 77 1 o UQ(P) ( )
We know X, ; is the unbiased estimation of X; ;. Following Hazan and Minasyan (2020), we take expectation over all ran-
domness {7y ; with the reverse order {1 ;, - - - , £ ;. It is worth of attention that X, ; is deterministic on & ; given {; 1) ;. Hence,
we have
. - . - . - 2D
Eer [ |X¢,i — Xt-i”z] = E¢, , “|Xt,i - Xtﬂ'”z] =Ee¢, 1, [Eim [HX“ — Xeilly ‘g[t_l]vi]] < Jm (82)
The inequality is due to Lemma 11. Because of {&; 1, - , &, } 1.i.d., we have
. - 2D
Bery ([ = Xeillo] < == (83)
Therefore, by summing up above inequalities, we have
Eep [I%e — %eill2] < Eepy [l1%e — Xeill2 + %6 — Xeill2]
JiG 2D 2D (84)

<npdp-Y"" 22 22
=T e Y um Tt

Ne,
1—0’2(P) :

where € = ndD



Proof of Lemma 14

Following the same derivation, we define 5\2(7" =1,---,T)as
N — {67”, if r <t
" 0, ifr>t.
and consider the difference between D(\} ,Af)and DO - NG
Ay = (X Ap) — DO N
= D(Vy, Vt 1, Vi, oo ,0) = D(Vy,-++, V1,0, ,0)

=t
EXAA

I\/o

(fﬁu_l)> LA ”ch:2 + FX(0)

- . dD -
(Vi) = Fy (V) = T52G7 + 7 (0)
ndD

Fi(%)) — —G? + F}(0),

(85)

(86)

where the first inequality is due to the smoothness of & (y), the third equality is due to X, = Vh; (=2Z;-1) = Vh; ( —@M,l)

(Lemma 10) and the last equality is due to Ft*(@t) = <Vt, f{t> — Ft(fq) = 0 for the linear function Ft(x) = <@t, x> . Then,

following the similar derivation of Theorem 1, it is easy to obtain that

2D

T ~ T B T _ ~ ’I’)dD
Z<Vt,§(t—x*>:ZFt(xt ZFt SZF()AQ)—LHEIII;:IZF}(X) G2 7

t=1 t=1 t=1 t=1

Proof of Lemma 16
To prove Lemma 16, we define the following auxiliary variable,

)V(t’i = Vh:; (—itfl’i) .
proof of (72)
Using triangle inequality and Lemma 12, we have
(V%) Xei — %e) = (Ve i (Xei), X — Xei) + (Ve (Xei), %ei — Xe)
< (Vi (Rei)s Xei = Xea) + GlRei — X2
79 ~ ~ 5
< (Vi (Xei)s Xei — Xe4) + €G,
where € = ndDy \{;?P)
Now, proceed to bound the first term. By using Lemma 15, the first term can be rewritten as

(Vi (Xei)sXes — Xei) <AV e (Xei) Xei — Xei) + Bl Xei — %.4]|3-

87)

(88)

(89)

(90)

Moreover, X; ; is is the unbiased estimation of %, ; and V f ;(%X; ;) is independent of X, ; — X ; with respect to &; ; condition
on &j_1),4- Followmg Hazan and Minasyan (2020) we take expectation over all randomness &), with the reverse order

Er.iy €1
Eery (Ve (ki) Xei — Xei)] = By [(V frj(Re,i)s Xe i — %e.4)]
=E¢, ), [Ee,, [(Vfi,;(Kei)s Xei — %ei) [€—114] ] = 0.
So combining with Lemma 11 and Lemma 15, we have

By, UV frj(Xea), Xe — Xe0)] = Eepyy , (V frj(Xe), Xt — Xe.4)

N y - y 46D?
<Ee, ., [(Vfrj(Re,i)s Xei — Xea) + Bll%ei — %e4]13] < .

m

Because of {&¢ 1, -+ , & n}id.d., we have

48D?

E
¢ m

oy (Vi (Rei), Xei — %e0)] <

O

92)

93)



After bounding the first term of (89), we have

By [V fi5(Xe,i), Xt — Xe)] < 40" + €G. (94)
proof of (73)
(Ve (Reg)sXeg = Xe) = (Vi (Rej)s Xej = e ) + (Vi (Re ) Xej = Xe)
<AV (X ) Xey — %eg) + GllXej — Xelf2 )
(78)

< (Vg (Reg)s X — %) + €G.
The last inequality is because of Lemma 12. Also, by using Lemma 15, we have
(Ve Xeg)s Xeg = %e ) < (Vi (Xej)s Xeg — %) + Bl%e; — %

For the same reason that X, ; is is the unbiased estimation of X; ; and V f; ;(X; ;) is independent of X; ; — X; ; with respect to
&t,j condition on §[;_1) ;. So combining with Lemma 11 and Lemma 15, we take expectation over {7 ; with the reverse order

fT,ja RS R

By, ((VFi(Reg)s e — %)) = Eeyp, [((Vfr5(Reg)s Xej — %e,5)]

3 (96)

< Ee,y, (Vi (Reg) e — %ig) + Bl%e; — % 05] < MmDQ- o7
Because of {&¢1,- -+ , & n ) 1.i.d., we have
Ee iy [(Vfe,j(Xe,5)s Xe,j — Xe,5)] < 46152- (98)
So E¢,,., [(V fi,j(X¢;),X¢,; — X¢)] is upper bounded by
Eepy [V fr(Xe,5)s Xt — %)) < 480" + €G. 99)
proof of (74)
(Ve (e) % = Xa5) = (Vi (Xe) e — %o 5) + (Vi (Re), %ej — X j)
< GlI%e = Xegll2 + (Ve (Xe), Xt j — Xe ) (100)
(7§8) €G+ (Vfj(Xe),%e; —Xej),
where € = ndD%.

Also, X, ; is is the unbiased estimation of x; ; and V f; ;(X;) is independent on %, ; —X; ; with respect to {; ; when condition
on ;13,5 So we take expectation over [y ; with the reverse order {15, -+ - , &1 5:

By, UV fii(Re)s Xe5 — Xe )] = Eepyy, (Ve (%), %e 5 — Xi,5)]

=Ee,_y, [Be, (Vg (Re) %ey — %) [€e-1)5]] = 0. (101
Because of {&¢ 1, -+ , & n}id.d., we have
Beiry (Vi (i), %ej — %e.5)] = 0. (102)
Therefore, the upper bound of E¢ ., [(V f; ;(%¢), X: — Xt 5)] is
B¢ (Vi (%e), % — X 5)] < €G. (103)

Proof of Theorem 3
Proof of general convex losses

Lemma 17. (Proposition 17 in (Hazan and Minasyan 2020)) Suppose {s1, - - ,Sm } is martingale-difference sequence defined
on{Fi, -+, Fm} So{s1, -+ ,sm} holds that Yu € [1,m], E[s,|Fu—1] = 0and Jc,, > 0, ||sy|l2 < ¢y. Then for all v > 0

m T2
Pr ] >r SQexp{—m}. (104)




We first define the following auxiliary variable,
Xt = Vhy (=Zi-1,0) - (105)

Then, x;; = % ZZZl x{, 1s is the unbiased estimation of X, ; Denote s,, = % (iyl — X Z) for learner 7 at round ¢, which is
, =1%, , \ ,

the martingale-difference sequence on {Fy,- - , Fp } = {thyi, -+, v} = & i Then, we have o Sy =Xt — Xt as well
asEyu [s,, \vtl VY ;1] = 0 due to the unbiased estimation and i.i.d. samples from an unit ball B. According to Assumption

I%=%eills 2D
— m

1, there is ||sy]|2 = ||% (i;‘z — )ch) Iz = —

Pre, (

For some 6 > 0, let 7 = 2D/ 2 In 2F and there is

= ¢;. By Lemma 17, we can obtain that

r2
>r| <2exp§ —3p7 (- (106)
2 m

E th_th

1 & )
Pre (=S (5% —%.,)|| >r] <2 107
([ o] =)<t o
Because of X; ; = % Sy Xy, and {&.1, -+ ;& n}iid., for the whole interval [1,T’] the union bound is
Pre,, (Vt € [1,T], X —%eill, > 7) <6, (108)
which also means
Pre,, (Vte [1,T), ([ —%eill, <7) > 1-46. (109)

Therefore, with at least 1 — ¢ probability, ||X; — X, ;||2 is bounded as following

(78),(109)

I%e — Xejille < ||%e — Xeille + 1 Zes — Reille < e+, (110)
where r = 2D,/ % In % and € = ndD 1_‘{2’?]3).
Following the same proof framework of Theorem 2, we have
T
Regret; Sn{z<vt,kt—x*>}+3(6+r)GTn. (111)
t=1

Using Lemma 14, with at least 1 — ¢ probability, Algorithm 2 guarantees

T
Regret, <n {Z <@t,§<t - x*>} +3(e+r)GTn

t=1

dD 2D
<n{77 G2T+}+3(e+r)GTn
n (112)
2D
= 200 P G210 4 (e + 1)GTn
n
2D 1 3
= 2 dDGTn VAT BT
n 2 1—o0y(P)
where r = 2D/ 2 In 2L
Proof of smooth and convex losses
Denote g; satisfies ||g:||2 < G and E[(g, X¢j — X¢,5) [€1,5, -, &—1,5] = 0. Let s, = (g, X¢,; — Xy,;) for learner j at round
t, which is the martingale-difference sequence on {Fi,--- , Fr} = {&15,--- ,&r,;}. Because E[s;[&; j,- -+ ,&—1,;] = 0 and
Iselle = 1 {8t: %t — % i) ll2 < GllZe; — %¢ jll2 < 2GD = ¢,. By Lemma 17, it can be obtained that
T 7,12
~ - / — 5
Preg, ;<gt,xm — %) > 7 SQeXp{_8G2D2T} =34 (113)




As it is mentioned in the previous section, for some § > 0, there is [|X;,; — %y j||2 < 7, in which 7 = 2D/ 2 In 2F'. Now,

let &' = % and ' = 2DG4 /2T In % =2DG /2T In %. Then, there is

T
Preg, (

Z (81, Xt — Xt,5)
t=1

Because of {&¢ 1, -+ , & n } 1.1.d., for the whole interval [1, T| the union bound is

> r') <4 (114)

T
Preg, ( D (g Key — %uy)| = 7"’) <?, (115)
t=1
which also means .
Preg, ( Y (86K — % )| < r’) >1-4. (116)
t=1

Following the same proof framework of Lemma 16, we can derive

Mﬂa

T
Z (Vi (XRei) X —Xe) = (V fr5(Xe,i)s Xei — X i) +Z (Vifei(Xei) X — Xe)
t=1 t=1

t

ING
NEE

(Vfi,5(Xe,i) Xei — X¢5) + €GT

t=1 (117)
an T T
S Z(vft,]( ) th th +6Z||th thHQ"'CGT

t=1 t=1

(116),(109) )
< 7'+ Br°’T + ¢GT,

where r = 2D,/ % In %, r' = 2DG/2T ln and € = ndD 7 ‘F(P) The first inequality is due to Lemma 12. The second
inequality is due to Lemma 15. The last 1nequahty is because that V f; ; (%¢,;) is independent of X; ; — X, ; condition on £ [t—1]i
and satisfies E[(V f; ;(X¢,i), X¢,i — X¢,i) |€1,, - - &—1,4] = 0. Hence, Zthl (V fr,j(Xt,i), Xei — X¢5) < v’ with at least 1 — &

probability. Meanwhile, we also have ||X; ; — %Xy j||2 < 7.
By the same way, we can obtain that

T
D (Vi (Fei) %Ki — %) < eGT + BroT + 1, (118)
t=1
T
S UV fo(Reg)s Rej — %) < €GT + Br2T + 17, (119)
t=1
T
> (Vi) % — %y ) < eGT +1'. (120)
t=1
Therefore, we can also obtain
T
Regret, < n {Z <@t, % — X>} 1 3¢GTn + 3r'n + 26r2Th. (121)
t=1

Using Lemma 14, with at least 1 — § probability, Algorithm 2 guarantees

T
Regret, <n {Z <@t, X — x*>} + 3¢GTn + 3r'n + 28r*Tn

=1
dD 2D
<n {77 G*T + = p } +3e¢GTn + 3r'n + 28r*Tn (122)
2D 1 3
—" 1 9dDG2Tn ( = A PP 28r2Tn,
2 UQ(P)

where 1’ = ZDG,/QTIH% andr = 2D,/ % In %.



Proof of Theorem 4
Algorithm 3 can be reduced to Algorithm 2 with new settings, e.g., the number of rounds 7 = T'/k and the block losses
ft’, - Zt (t—1)-k+1 f¢i in the reduced game. Here, we list some crucial changes.

* In Assumption 1, the domain set in the reduced game is upper bounded by D' = D.

* In Assumption 2, for the block loss function ft’,,4 Zt (t'—1)-k+1 f+,i, the Lipschitz constant in the reduced game is
G =k-G.

o If f; ; is B-smooth, then the block loss function ft’, . Zt (t'—1)-k41 fi.i 18 (k - B)-smooth.

Proof of general convex losses
After reduction, Algorithm 3 also guarantees Theorem 2 for general convex losses.

2D’ 6D'G'T’
E [Regret,] < 2" + nd DGT'nL + Tﬂ
(123)
2Dn 6D(k-G)T'n
= 4+ ndD(k-G)*T'nL + ————"——,
g PG Vi
where I = % + 1200 With g = 7/ 727 andm = k
E [Regret;] < 2kDGnV2dLT’ + 6DVEGT n. (124)
LetT' =Tz and k= T3 , ,
E [Regret,] < nDG (2\/2dL + 6) Ti=0 (T%) . (125)
Proof of smooth and convex losses
After reduction, Algorithm 3 also guarantees Theorem 2 for smooth and convex losses.
2D’ /D/2T/
E [Regret;] < Dy ndDG"™T'nL + 85°D"1'n
m
2Dn 8(k - B)D*T'n (126
= 4+ ndD(k-G)*T'nL + — 2"~ —
i m
where L = § + 200 With n = 1\ /54 andm = k
E [Regret,] < 2kDGnvV2dLT’ + 83D*T'n. (127)
LetT' =T5% and k = T3
E [Regret,] < nD <2G\/2dL + 8ﬁD> T =0 (T’) . (128)
Proof of Theorem 5
Following the same proof framework as Theorem 4, we list some crucial changes after reduction.
* In Assumption 1, the domain set in the reduced game is upper bounded by D' = D.
* In Assumption 2, for the block loss function ft’, = Zt (t'—1)-k+1 f+,i, the Lipschitz constant in the reduced game is
G =k-G.
* If f,; is B-smooth, then the block loss function f; ; Zt (t, 1)kt 1 fi.i 18 (k - B)-smooth.
Proof of general convex losses
After reduction, Algorithm 3 also guarantees Theorem 3 with 1 — § probability for general convex losses.
2D’
Regret,; < ny ndD'G"?T'nL + 3rG'T'n
2D’ 2717
= 2N dAD'GPT L + 6D'G'T'ny | = ln - (129)
2D 2 27
= —]” +ndD(k - G)*T'nL +6D(k - G)T'ny | —In =



WhereL:%+%andr:2D’ 2 1n 2 Withnp = %Q/ﬁ andm =k

27"
Regret; < 2kDGnV2dLT’ + 6DGT'ny [ 2k In 5

/ 1/2 ) B
Regret, < DGn <2v2dL +64/21n 2T6 ) T = O (Ti In (15) .

Proof of smooth and convex losses

LetT' =T%andk = T3

After reduction, Algorithm 3 also guarantees Theorem 3 with 1 — § probability for smooth and convex losses.

D'n

+ndD'G"?T'nL + 3r'n + 26'r*T'n

2D’ / 4 168'D*T'n_ 2T’
= 22 dD'GPT'nL + 6D'G'ny | 21" In 5+ 165 D7 | 27
U

2
Regret, <

m 0

. 2t /
_2Dn ndD(k - G)2T'nL + 6D (k - G)ny /21" 1n§ 4 16k 5D Tn | 207
n

m 1)

where L = § + = v = 2Dy /2 In 2 and 1/ = 2D'G'\ /21" In §. With ) = 7/ 72 and m = k

/ 4 27"
Regret, < 2kDGnV2dLT’ + 6D (k - G)ny/2T" In s+ 168D*T'n1n 5

LetT' =T3 andk = T3
4 272/3
Regret; < Dn | 2GV2dL + 6G4/21n 5 + 168D In 5 T
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